随钻正脉冲测井仪压力信号生成特性研究

赵常青 ${ }^{1}$ ，刘凯 ${ }^{1}$ ，赵桐 ${ }^{1}$ ，刘自 ${ }^{2}$ ，梁文宏 ${ }^{1}$ ，王志龙 ${ }^{1}$
（1．西安理工大学 机械与精密仪器工程学院，陕西 西安 710048；
2．中国石油集团测井有限公司 随钻测井中心，陕西 西安 710054）

Abstract

摘要：随钻正脉冲测井仪压力波信号的强度决定了井下数据传输速率和传输距离。为了提高信号传输速率，确保信息传输准确，提高传输距离，需要对信号发生单元进行优化，以此来提高正脉冲信号强度。以旋转阀正脉冲测量仪为研究对象，利用计算流体力学（CFD）方法，对旋转阀压力信号进行仿真分析，研究了不同工况下钻井液流量和定，转子轴向间隙对脉冲信号强度的影响规律，并通过实验验证了压力波信号的特性。研究结果表明：压力信号幅值随着轴向间隙的增大而减小；增加钻井液流量可以提高信号强度，当钻井液流量由 $10 \mathrm{~L} / \mathrm{s}$ 增大为 $35 \mathrm{~L} / \mathrm{s}$ 时，流量的大小对压力信号幅值影响很大。

关键词：随钻正脉冲测井仪；传输距离；旋转阀；钻井液
中图分类号：TE937 文献标志码：A

Research on the generation characteristic of pressure signal of the positive pulse measurement with drilling system

ZHAO Changqing ${ }^{1}$ ，LIU Kai ${ }^{1}$ ，ZHAO Tong ${ }^{1}$ ，LIU Xiao ${ }^{2}$ ，LIANG Wenhong ${ }^{1}$ ，WANG Zhilong ${ }^{1}$ （1．Faculty of Mechanical and Precision Instrument Engineering，Xi＇an University of Technology， Xi＇an 710048，China；2．Logging While Drilling Center，China Petroleum Logging CO．LTD．，Xi＇an 710054，China）

Abstract

The pressure signal strength of the positive pulse measurement with drilling system de－ termines the transmission rate of the downhole data and its transmission distance．In order to im－ prove the transmission rate of the pressure signal，ensure the accurate transmission of informa－ tion and improve its transmission distance in the logging with drilling technology，the signal gen erator should be optimized in design so as to improve the strength of positive pulse signal．With the rotary valve positive pulse generator as the study object，the computational fluid dynamics （CFD）method is used to conduct the simulation analysis of rotary valve pressure signal．The drilling fluid flow rate and the effect of axial gap between stator and rotor upon the laws of pulse signal strength is studied under the different industrial operation conditions，and the characteris－ tics of pressure wave signals are tested via experiments．The results from the research indicate that the pressure signal amplitude value decreases with an increase in the axial gap between stator and rotor，and that an increase in drilling fluid flow can improve the signal strength and when drilling fluid flow increases from $10 \mathrm{~L} / \mathrm{s}$ to $35 \mathrm{~L} / \mathrm{s}$ ，the magnitode of drilling fluid will have a great impact upon the pressure signal amplitude value．

Key words：positive pulse measurement while drilling system；transmission distance；rotary valve；drilling fluid

收稿日期：2013－09－12
基金项目：＂十二五＂国家科技重大专项基金资助项目（2011ZX05020－002）；国家自然科学基金资助项目（51275409）；陕西省科技计划资助项目（2012JQ7009）。

作者简介：赵常青，男，博士生，研究方向为流体力学，随钻测井技术。E－mail：zhaochqing＠163．com。刘凯，男，教授，博导，研究方向为现代传动技术，无级变速传动系统与车辆系统人机工程。E－mail：kliu＠mail．xaut．edu． cn 。

随钻测井可以在钻井作业中实时测量油气层信息，地质参数及井眼轨迹参数，并绘制相应的测井曲线，为下一步施工提供依据 ${ }^{[1]}$ 。在钻井液脉冲，电磁波，声波和光纤四种随钻测量 ${ }^{[2]}$ 方式中，钻井液压力波动信号传输，是目前从井下向地面传输数据最实用可靠的方法 ${ }^{[3]}$ 。按照压力信号产生机理，钻井液脉冲信号随钻测井仪可分为负脉冲信号发生器，正脉冲信号发生器和连续波信号发生器三种。在这些仪器中，钻井液正脉冲器 ${ }^{[4]}$ 以其具有信号稳定的优点而被广泛应用。正脉冲压力信号强度关系到仪器工作性能和传输距离，提高压力信号愊值对于深井条件下高效，可靠地传输井下测量数据是十分必要的 ${ }^{[5]}$ 。许多学者致力于压力信号发生单元的研究 ${ }^{[6-7]}$ ，研究过程中由于对节流孔处的局部损失计算不准确，造成理论计算结果偏小；也有学者对信号衰减因素 ${ }^{[8]}$ 进行了分析，Wilson C．Chins ${ }^{[9-10]}$ 等人采用一维波动理论对地面系统接收到的压力信号进行处理，用提高信噪比的方法实现信号的检测。后两种研究方法只能理论上提高信号强度，研究 ${ }^{[11]}$ 末进行直接的实验对比。要想获得理想的压力信号，需要对信号发生机构进行深入研究，进而从本质上提高信号强度，实现深井及复杂工况条件下测量数据的稳定，可靠传输。信号发生单元也是压力脉冲随钻测井仪的核心部件，该部分的研究关系到压力信号的强弱。本文以正脉冲压力信号强度为主要目标，以定，转子轴向间隙和泥浆流量两个关键因素为切人点，分别从数值模拟和实验两个方面对影响信号强度的因素进行对比分析。

1 数学模型

1．1 工作原理

本文计算模型以现有的旋转阀脉冲发生器为研究对象，分析脉冲信号脉宽为 0.75 s 时的压力信号，图 1 为脉冲信号产生原理图。

图1 压力脉冲信号生成原理图
Fig． 1 Schematic diagram of pressure wave signal generation
转子不断发生周期性正反转，转子的动作通过控制信号驱动。在工作过程中，仪器内部通流面积不断发生变化，泥浆流速及上游压力发生周期性变

化，从而形成压力信号波。计算时选取钻井液密度为 $1200 \mathrm{~kg} / \mathrm{m}^{3}$ ，流体看作是固，液两相流 ${ }^{[12]}$ ，其中固相含量为 6.25% 。

1.2 旋转阀正脉冲器压力信号产生原理

根据孔口的长径比计算分析可知，该钻井液流经旋转阀模型属于薄壁孔 ${ }^{[13]}$ 类型。由液压流体力学关于薄壁孔流量特性理论分析可知，其流量特性 ${ }^{[14]}$ 可以表示为：

$$
\begin{equation*}
q=C_{q} A_{T} \sqrt{\frac{2}{\rho} \Delta p} \tag{1}
\end{equation*}
$$

式中，q 为流经旋转阀的钻井液流量；C_{q} 为流量系数，由孔口结构形式及计算模型雷诺系数 Re 分析，取 $C_{q}=$ $0.964 R e^{-0.05} ; A_{T}$ 为旋转阀的过流断面面积；ρ 为钻井液密度；Δp 为旋转阀产生的压力信号强度。

图2 旋转阀结构图
Fig． 2 Structure of rotary valve
对于图2所示的旋转阀结构，阀口的通流面积为四个定子孔通流面积之和，每个孔的通流面积 A_{10} 计算方法为：

$$
\begin{equation*}
A_{10}=\frac{1}{2}\left(R^{2}-r^{2}\right) \alpha \tag{2}
\end{equation*}
$$

其中，R 为定子流道外侧半径；r 为转子叶片内侧半径；α 为转子旋转角度。

联合式（1）和式（2）可得：
$\Delta p=\frac{\rho}{2 C_{q}^{2}} \frac{q^{2}}{A_{T}^{2}}$
$\Delta p=\frac{\rho}{8 C_{q}^{2}\left(R^{2}-r^{2}\right)^{2}} \frac{q^{2}}{\alpha^{2}}$
假设 $\rho, ~ C_{q}, ~ R, ~ r$ 为常量，从式（3）可以看出，压力信号强度 Δp 与通流面积 A_{T} 的平方成反比，与流量 q 的平方成正比。

2 数值计算

2.1 数值计算方法

本文使用 Workbench 进行计算域非结构化网格生成，对流场模型进行四面体网格划分，且对定，转子轴向间隙区域网格进行加密处理，研究发现当

网格数量达到 37 万个时，继续增加网格数对计算结果影响不大，因此计算时选取网格数为 37 万。钻井液流场旋转强烈，弯曲，三维性以及流动分离等特点，使得其中的湍流呈现各向异性，从而具有各种湍流尺度。因此采用三维 reynolds 时均 $N-S$ 方程和标准的 $k-\varepsilon$ 湍流模型 ${ }^{[15]}$ 作为数学模型，利用 simple算法进行速度，压力的耦合计算，对流项采用二阶迎风格式。

针对定，转子轴向间隙及泥浆流量对压力信号的影响因素进行研究。在对某一影响因素进行分析时，保证其他因素不变。

2.2 不同轴向间隙对压力信号的影响

脉冲器工作时定，转子轴向间隙可调范围为 $0 \sim$ 0.08 in ，过小的间隙会引起仪器耗能高，同时也会出现卡阻现象。工程实际应用中常选用的间隙值为 $0.03 \mathrm{in}, ~ 0.045 \mathrm{in}$ 及 0.06 in 。考虑特殊工况的应用，首先模拟了上述三种轴向间隙下的压力信号特性，以分析轴向间隙对压力信号的影响。数值计算时选取钻井液流量为 $35 \mathrm{~L} / \mathrm{s}$ ，其计算结果如图 3 所示。

图 3 不同轴向间隙下的压力波信号
Fig． 3 Pressure wave signal at different axial clearances
图 3 给出了不同定，转子轴向间隙下压力波信号的比较。由图可知：钻井液流量为 $35 \mathrm{~L} / \mathrm{s}$ ，轴向间隙为 0.03 in 时，压力信号幅值为 3.62 MPa ，随着轴向间隙的增大，钻井液压力信号有所降低，当定，转子轴向间隙变为 0.045 in 和 0.06 in 时，压力幅值分别降为 2.93 MPa 和 2.27 MPa 。压力波幅值随着轴向间隙的增大而降低，这是因为：轴向间隙会影响转阀的通流面积，当增大轴向间隙时，通流面积随之增大，因此该流域速度场变化较大，最终引起压力波信号幅值减小，从而引起脉冲信号强度的减弱。

2.3 不同流量下压力信号分析

当取定，转子轴向间隙分别为 $0.03 \mathrm{in}, ~ 0.045$ in， 0.06 in 时，脉冲发生机构所产生到的压力信号随泥浆流量变化关系如图4所示。

图4 压力波幅值与流量关系图（ $\rho=1200 \mathrm{~kg} / \mathrm{m}^{3}$ ）
Fig． 4 The relationship between pressure and flow rate $\left(\rho=1200 \mathrm{~kg} / \mathrm{m}^{3}\right.$ ）
由图4可以看出，当钻井液流量小于 $10 \mathrm{~L} / \mathrm{s}$时，压力信号比较弱，此时增加流量对信号强度的提高作用不大；当钻井液流量为 $10 \sim 35 \mathrm{~L} / \mathrm{s}$ 之间时，增大泥浆流量对增强压力信号的作用十分明显。当轴向间隙一定时，为了获得预定的压力波幅值，选择适当的泥浆流量，控制流速的变化，能够使脉冲发生机构产生理想的压力信号。

在轴向间隙为 0.06 in 时，压力脉冲强度较小，需要提高泥浆流量以满足不同钻井深度的需求。在定，转子轴向间隙不变的情况下，增大泥浆流量，可以有效提高压力信号的强度，但泥浆排量并非越大越好。实际测井中需要在定，转子轴向间隙的选取与泥浆流量之间进行优化。

3 实验分析

为了对随钻脉冲发生器信号进行验证分析，在某井场对随钻正脉冲测量仪压力信号进行了测试。实验测试系统结构如图5所示。

图5 实验测试系统结构简图
Fig． 5 The schematic diagram of experiment setup

通过地面泥浆泵调节钻井液流量，在同一井中分别对三种轴向间隙工况进行了测试。

现场实验在 $0.06 \mathrm{in}, ~ 0.045 \mathrm{in}$ 和 0.03 in 三种

不同轴向间隙下进行了循环测试，同时对地面立管压力传感器进行信息采集，压力波信号测试结果如图6所示。

图6 不同工况条件下的压力波信号
Fig． 6 Curves of pressure signal of different working conditions

为了验证本文所使用数值计算方法的有效性，本文将数值计算与实验测试的压力信号幅值进行比较。当钻井液流量为 $35 \mathrm{~L} / \mathrm{s}$ 时，不同轴向间隙下的

信号幅值如表 1 所示。
从表1可以看出，数值计算方法所得结论可信度高，其所得的压力波幅值与现场实测结果相吻合，

可以作为实际测井中参数选取的依据。
表1 实验测试与数值计算的对照表
Tab． 1 The results of the measured and the numerical simulation

轴向间隙 $/ \mathrm{in}$	0.03	0.045	0.06
数值计算压力 信号幅值 $/ \mathrm{MPa}$	3.62	2.93	2.27
实验测试压力 信号幅值 $/ \mathrm{MPa}$	3.60	2.91	2.26

4 结 语

数值方法计算得到的压力波信号稳定可靠，可以应用于实际测井过程中；深井及工况复杂的条件下，可以通过减小轴向间隙或增加泥浆排量来提高压力信号幅值，从而实现增强信号强度，提高传输距离的目的。

参考文献：

［1］朱桂清，章兆淇．国外随钻测井技术的最新进展及发展趋势［J］．测井技术，2008，32（5）：394－397．
Zhu Guiqing，Zhang Zhaoqi．Recent advances in foreign logging while drilling technology［J］．Well Logging Technology，2008，32（5）：394－397．
［2］马哲，杨锦舟，赵金海．无线随钻测量技术的应用与发展趋势［J］．石油钻探技术，2007，35（6）：112－115．
Ma Zhe，Yang Jinzhou，Zhao Jinhai．Status and devel－ opment trend of MWD technique［J］．Petroleum Drilling Techniques，2007，35（6）：112－115．
［3］肖俊远，王智明，刘建领．泥浆脉冲发生器研究现状［J］．石油矿场机械，2010，39（10）：8－11．

Xiao Junyuan，Wang Zhiming，Liu Jianling．Research status of mud pulse generator［J］．Oil Field Equipment， 2010，39（10）：8－11．
［4］李军，马哲，杨锦舟，等．一种新型的 MWD 无线随钻测量技术［J］．石油仪器，2006，20（2）：30－32。

Li Jun，Ma Zhe，Yang Jinzhou，et al．A new wireless measurement system while drilling［J］．Petroleum In－ struments，2006，20（2）：30－32．
［5］Martin C A，Philo R M，Decker D P，et al．Innovative advances in MWD［R］．SPE 27516， 1994.
［6］李喜荣，房军．井下旋转压力信号发生器的仿真［J］．石

油矿场机械，2007，36（2）：45－47．
Li Xirong，Fang Jun．The simulation of downhole rotary pressure signal generator［J］．Oil Field Equipment， 2007，36（2）：45－47．
［7］蔡文军，刘涛，江正清，等．往复节流型正脉冲发生器脉冲产生过程模拟［J］．石油矿场机械，2010，39（2）： 55－58．
Cai Wenjun，Liu Tao，Jiang Zhengqing，et al．Simula－ tion of pulse generating for reciprocating throttled posi－ tive pulse generator［J］．Oil Field Equipment，2010， 39 （2）：55－58．
［8］何树山，刘修善．钻井液正脉冲信号的衰减分析［J］．钻采工艺，2001，24（6）：1－3．
He Shushan，Liu Xiushan．Analysis of signal attenua－ tion for positive drilling fluid pulse［J］．Drilling \＆Pro－ duction Technology，2001，24（6）：1－3．
［9］Wilson C C，Hamlin K H．MWD surface signal detector having enhanced acoustic detection means［P］．United Stated Patent：5459697， 1995.
［10］Wilson C C，Hamlin K H．MWD surface signal detec－ tor having enhanced acoustic detection means $[\mathrm{P}]$ ．U－ nited Stated Patent：5535177， 1996.
［11］贾朋．钻井液连续波发生器设计与信号传输特性实验分析［D］．青岛：中国石油大学，2010．
Jia Peng．Design of drilling fluid continuous wave genera－ tor and experimrnt research of signal transmission charac－ teristic［ D ］．Qingdao：China University of Petroleum， 2010.
［12］Dias F，Elcrat A R，Trefelhen L N．Ideal jet flow in two dimensions［J］．Journal of Fluid Mechanics，1987， 185：275－288．
［13］姜继海，宋锦春，高常识．液压与气压传动［M］．北京：高等教育出版社，2002：36．
［14］房军，苏义脑．液压信号发生器基本类型与信号产生的原理［J］．石油钻探技术，2004，32（2）：39－41．

Fang Jun，Su Yinao．The basic types and it＇s mecha－ nism of the hydraulic signal producer［J］．Petroleum Drilling Technology，2004，32（2）：39－41．
［15］Anderson J D．Computation fluid dynamics：The basics with applications［M］．New York：McGraw－ Hill， 1995.
（责任编辑 王卫勋）

