DOI:10.19322/j. cnki. issn. 1006-4710. 2018. 04. 001

基于多源数据集估算缺资料地区地表净辐射 及其时空变化特征

张晓龙,沈 冰,黄领梅,权 全,莫淑红,梁晓燕

(西安理工大学省部共建西北旱区生态水利国家重点实验室,陕西西安710048)

摘要:本文以黄河源区为例,利用 ITPCAS 气象要素驱动数据集和 GLASS 地表反照率数据集,基于 Penman-Monteith 公式估算缺资料地区 1979—2015 年逐日地表净辐射(R_n),用 GIS 空间分析 技术与 Mann-Kendall 趋势分析方法揭示其时间动态特征与空间演变规律。结果表明:1)对比 IT-PCAS 气象要素驱动数据集和气象站数据估算的 R_n ,其相关系数均在 0.98 以上,均方根误差处于 1.29~1.77 之间;2)黄河源区年和四季 R_n 均呈下降趋势,每 10 年均降幅为—0.067 MJ·m⁻²·d⁻¹,秋季 降幅最小,春、冬降幅最大;黄河源区 R_n 年内呈单峰型,最大值出现在 5 月(14.31 MJ·m⁻²·d⁻¹),最小 值出现在 12 月(3.34 MJ·m⁻²·d⁻¹);3)年和各季节 R_n 值及变化趋势的空间分布相似;年平均 R_n 的大部分地区(91.6%)呈下降趋势,其中冬季 R_n 下降最明显,秋季 R_n 下降最不明显;4)黄河源区 R_n 在 4 000~4 500 m 的区域内最大,而在 4 500 m 以上最小;除了秋季 R_n 在 3 500~4 000 m 区域 外,其余季节在所有 DEM 分区中皆呈现下降趋势。

Estimation of surface net radiation and its temporal and spatial variations in ungauged region based on multi-source data sets

ZHANG Xiaolong, SHEN Bing, HUANG Lingmei,

QUAN Quan, MO Shuhong, LIANG Xiaoyan

(State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China,

Xi'an University of Technology, Xi'an 710048, China)

Abstract: By using ITPCAS Meteorological Forcing Dataset and GLASS surface albedo dataset, Penman-Monteith formula was used to estimate daily surface net radiation (R_n) in ungauged region during 1979-2015, the source region of the Yellow River is taken as a case study. GIS spatial analysis technology and Mann-Kendall trend analysis method are used to reveal regional R_n spatiotemporal dynamic characteristics. The results show that 1) By comparing R_n estimated by ITPCAS Forcing Dataset with R_n estimated by weather station data, the correlation coefficients of all sites are above 0.98, with the values of root mean square error between 1.29 \sim 1.77; 2) Annual/seasonal R_n values decline visibly with a fluctuant process in the source region of the Yellow River, with the changing rate of the annual R_n reaching 0.067 MJ \cdot m⁻² \cdot d^{-1} every 10 years. The maximum downtrend (-0.075 MJ \cdot m⁻² \cdot d⁻¹ every 10 years) is in spring and winter, while the minimum downtrend (-0.039 MJ \cdot m⁻² \cdot d⁻¹ every 10 years) is in autumn. Regional mean monthly R_n has a single peak with the maximum value (14.31 MJ \cdot m⁻² \cdot d⁻¹) in May and the minimum value (3. 34 MJ \cdot m⁻² \cdot d⁻¹) in December; 3) The spatial distribution of R_n value and annual/seasonal variation trend is similar. The annual mean R_n in the most areas (91.6%) displays a downward trend. In the seasonal scale, the decline of R_n is most obvious in winter, while in autumn it is least obvious; 4) The maximum values of R_n are in the 4 000 \sim 4 500 m area, and the minimum values are in a region of more than 4 500 m. Except the region of 3 $500 \sim 4000$ m in autumn, the rest areas in all seasons showe a downward

收稿日期: 2018-06-14

基金项目:国家重点研发计划资助项目(2017YFC0403605);国家自然科学基金资助项目(51509202,51679185) 作者简介:张晓龙,男,博士生,研究方向为生态水文学、干旱区水文。E-mail: zhangzhangyanhe@hotmail.com 通讯作者:沈冰,男,博士,教授,博导,研究方向为水文学及水资源演变。E-mail: shenbing@xaut.edu.cn

trend.

Key words: ungauged region; multi-source data sets; surface net radiation; spatiotemporal change; Mann-Kendall trend analysis; source region of the Yellow River

地表净辐射(R_n)是影响陆-气能量交换和再分 配过程的重要参数^[1-2],是气候变化的重要驱动力, 被广泛应用于气候监测、天气预报和农业气象研究, 是当前全球气候变化研究领域的热点之一[3]。同 时,R_n也是构建各类生态模式的重要参数之一^[4-5], 尤其是在生态系统的蒸散过程中起到非常重要的作 用^[6]。在全球气候变化的背景下,研究 R_n 时空变化 特征,对于了解过去和当前的气候状态以及对未来 的气候变化、蒸散发的估算、植物生长发育过程、生 态系统生物量的形成与累积等研究具有重要意义。 目前获取地表净辐射的方法主要是将地面实测数据 按照某种规则进行空间插值,或通过经验统计方法 建立基于地面辐射实测数据和气象资料估算地表辐 射收支的经验-统计模型,通过反演得到一定范围内 地表净辐射[2,7-8]。这两种方法虽然在点尺度上估 算精度较高,但由于气象站数量有限且分布不均,地 表覆被类型复杂,实时气象参数(如气溶胶,云的含 量等)难以获取,因此不能满足大范围净辐射估算的 需求[12-13]。遥感反演法应是区域由点及面较佳的 技术手段。近年来, MODIS 数据、Landsat 系列数 据等被广泛应用于地表辐射收支的研究中[9-11]。

我国气象系统仅有 50 个地表净辐射观测台站,且 均建于 1993 年以后。由于站点少,资料序列短,开展的 相应研究也较少。青藏高原生态环境脆弱,被称为气 候的"放大器"^[12-13],但常规气象观测台站分布稀少且 极不均匀,为缺资料地区空间范围上净辐射估算带来 极大阻碍,远满足不了科研和业务的需求。当前主流 遥感反演产品使用地面站点较少,特别是在中国寒区、 旱区[18],数据精度还存在一定误差。利用地面气象站 数据对遥感产品进行数据融合得到的再分析常规气象 要素的驱动数据集不仅可以满足空间分布的要求,而 且在数据精度上也可以大大提高,为进一步研究提供 极大的便利。地表反照率决定了太阳辐射能量被地表 反射与吸收的比例,是气候系统的重要驱动因子之 一[13]。地表发照率的分布与土地利用类型、植被状况、 水分状况、积雪、地形等因素密切相关,在时间和空间 上呈现高度异质性。因此,本文以黄河源区为例,利用 ITPCAS 气象要素驱动数据集和 GLASS 地表反照率 数据集,取用联合国粮农组织(FAO)1998年推荐用于 计算参考作物蒸散发 Penman-Monteith 公式估算缺资 料地区长时间序列逐日 R_{n} ,在再分析数据集估算精度 验证的基础上,用GIS 空间分析技术与 Mann-Kendall 趋势分析方法揭示其时间动态特征与空间演变规律, 为进一步研究该地区气候变化及陆地生态系统蒸散的 影响提供技术支撑和理论依据。

1 研究区概况

研究区为龙羊峡水库以上的黄河源区,位于 32.2°~37.1°N,95.9°~103.4°E之间,属于青藏高 原东部(见图 1)。

图 1 研究区概况及气象站点分布 Fig. 1 General situation of the study area and distribution of meteorological stations

黄河源区总体为西北高,东南低,阿尼玛卿山为 最高点,龙羊峡为最低处,海拔在 2 508~6 253 m 之间,有冰川、盆地、高山和峡谷等地貌。黄河源区 属大陆性高原气候,干湿交替、冷热分明,气压低,温 差大,辐射强,光热条件较为丰富。受印度洋季风影 响,降水集中在 6~9 月^[5],年平均降水 234.6~ 839.2 mm,空间分布不均^[12]。黄河源区 3/4 的面 积分布着高寒植被,其中高寒草甸和高寒草原面积 最大。黄河源区为多年冻土和季节性冻土的过渡区 域,多年冻土分布下界平均气温在 -2.5° ~ -3.5° 范围内。由于气候变暖,黄河源区近年来冻 土发生显著退化。

2 数据来源与方法

2.1 数据来源及预处理

再分析气象数据集使用由中国科学院青藏高原 研究所开发的 ITPCAS(中国区域高时空分辨率地 面气象要素)驱动数据集(http://westdc.westgis. ac. cn/)^[13]。该数据集以 GEWEX-SRB 辐射资料、 Princeton 再分析资料、TRMM 降水数据以及 GL-DAS数据为背景场,并融合中国气象观测数据制作 而成。气象要素包括降水量、温度、比湿、风速、大气 压力、向下短波和向下长波辐射等,时间分辨率为 3 h,空间分辨率为 0.1°。该数据集在黄河源区数据 采样点1421个,可满足黄河源区气象要素空间分 布的要求(见图1)。本研究中所涉及的日尺度参数 是通过3h时段参数计算得到。为了分析 R_n的时 空变化特性,利用 ArcGIS 软件 CUBIC 重采样技术 将 0.1°数据集生成空间分辨率为 1 km 的数据集。 气象站数据源自国家气象科学数据共享服务平台 (http://data.cma.cn/)。黄河源区再分析数据集 数据采样点和气象台站点分布见图 1。

地表反照率使用全球陆表参量 GLASS 数据产品,取值范围 0~1,被用于计算短波净辐射,来源与 北京师范大学(http://glass-product. bnu. edu. cn)。该产品 2000 - 2012 年反照率数据是基于 MODIS 数据利用 AB(Angular Bin)算法开发的,其 空间分辨率为1 km,时间分辨率为8天。Liu 等利 用地 面实测数据和 MODIS 地表反照率数据 MOD43 对 GLASS 反照率数据产品进行对比验证, 结果显示两者具有很好的一致性,均方根误差小于 0.05^[14],所以该数据集可以直接使用。因数据源的 时间限制,本研究计算得到 2000-2012 年白天地表 反照率每一日的多年平均值,然后线性插值得到年 内每天的反照率数据集。 DEM 数据源自地理空间数据云(http:// www.gscloud.cn/)中90m分辨率SRTM产品。 为了确保数据空间尺度的一致性,将90mDEM数 据利用 ArcGIS 软件重采样生成1km分辨率的 数据。

2.2 地表净辐射估算方法

本研究采用 FAO 推荐的标准方法^[15],由净短波辐射 R_n 和净长波辐射 R_n 之差得到 R_n (MJ•m⁻²•d⁻¹):

$$R_{\rm n} = R_{\rm ns} - R_{\rm nl} \tag{1}$$

$$R_{\rm ns} = (1 - \alpha)R_{\rm s} \tag{2}$$

$$R_{\rm nl} = \sigma \left[\frac{T_{\rm max,k}^4 + T_{\rm min,k}^4}{2} \right] (0.34 - 0.14 \sqrt{e_{\rm a}}) \cdot (1.35 \frac{R_{\rm s}}{P} - 0.35)$$
(3)

$$\mathbf{R}_{so} = (0.75 + 2z \times 10^{-5})\mathbf{R}_{a}$$
(4)

$$R_{\rm s} = (a_{\rm s} + b_{\rm s} \, \frac{n}{N}) R_{\rm a} \tag{5}$$

$$R_{\rm a} = \frac{1440}{\pi} G_{\rm sc} d_{\rm r} \left[\omega_{\rm s} \sin(\varphi) \sin(\delta) + \right]$$

cos

$$s(\varphi)\cos(\delta)\sin(\omega_s)$$
] (6)

式中: α 为地表反照率; R_s 和 R_{so} 为向下短波辐射 和净空向下短波辐射(MJ·m⁻²·d⁻¹); R_a 为地外 辐射(MJ·m⁻²·d⁻¹),n为日照时数,N为可照时 数,z为海拔高度(m); $T_{max,k}$ 和 $T_{min,k}$ 分别为日最 大、最小绝对温度(K); σ 为 Stefan-Boltzman 常数 (4.903×10⁻⁹ MJ·m⁻²·d⁻¹); e_a 为实际水汽压 (kPa); a_s =0.25, a_s + b_s =0.75; G_{sc} 为日辐射常数 (0.082 MJ·m⁻²·min⁻¹), d_r 为日地距离, ω_s 为日 落时角, φ 为太阳时角, δ 为太阳赤纬角。

需要指出的是,基于中国区域高时空分辨率地 面气象要素驱动数据集估算 *R*_{n_ITP}时,*R*_s直接采用 驱动数据集数据。而基于气象台数据估算 *R*_{n_m}时, *R*_s采用式(5)计算得到。

2.3 地表净辐射时空变化分析方法

采用 Mann-Kendall 趋势分析方法对多站点和 区域平均长时间序列的 R_n进行时间趋势变化检验 和突变分析。基于秩的 Mann-Kendall 趋势分析方 法是一种非参数统计检验法,与传统参数方法相比, 样本可不遵从特定分布,亦不受个别异常值干扰,可 较客观地反映样本序列变化趋势,该方法被广泛应 用于序列突变分析和趋势检验。

利用线性回归分析可得到每个栅格的 R_n在一 定时间序列的变化趋势和强度^[6]。本文通过 IDL 程序得到每个栅格多年变化趋势 b,进而得到黄河 源区 R_n年际变化率空间分布图。计算公式为:

$$b = \frac{n \times \sum_{i=1}^{n} (i \times x_i) - \sum_{i=1}^{n} i \sum_{i=1}^{n} x_i}{n \times \sum_{i=1}^{n} i^2 - (\sum_{i=1}^{n} i)^2}$$
(7)

式中:b为变化趋势,如果 b < 0则表示减少趋势,反 之 b > 0则表示增加趋势;n为时间长度;i为年序 号; x_i 为第i年的栅格值。

3 结果与分析

3.1 再分析数据集精度检验

黄河源区处于高寒区域,气象站点稀少,且分布 极不均匀。所以使用气象站点进行空间插值的结果 并不能较为真实地反应研究区实际情况。

本研究使用 ITPCAS 驱动数据集估算黄河源 区 R_n 的时空变化。将再分析数据集代人式(1)~ (6)得到的 1979—2015 年逐日 $R_{n_{\text{TTP}}}$ 与气象站数据 代入式(1)~(6)得到的对应的逐日 R_{n_m} 。

为了定量评价 R_n的估算结果精度,将 7 个典型 气象站的气象数据估算的 R_{n_m}与对应的 1 km 气象 要素数据集计算的 R_{n_ITP}进行对比分析, R_{n_ITP} 与 R_{n_m}的散点图见图 2。虚线为散点的拟合直线, 对角 线为 1:1 等值线。

从图 2 可以看出整体上 $R_{n_{-}ITP}$ 与 $R_{n_{-}m}$ 的相关系数 R 为 0.98,其显著性在 P < 0.01 范围内显著,表明散点分布有一定的稳定性,二者有显著的相关性。大部分的点分布在 1:1 等值线上方,表明 $R_{n_{-}ITP}$ 较 $R_{n_{-}m}$ 略微偏大。

图 2 $R_{n_{_{_{_{_{_{_{_{_{_{_{_m}}}}}}}}}}$ 的散点图 Fig. 2 Scatter plots of $R_{n_{_{_{_{_{_{_{m}}}}}}}$ values

对逐日 R_n 的估算精度进行检验的评价指标为: 均方根误差(RMSE)、相关系数(R)和误差,在各站 点上计算结果见表 1,其中区站号为国家气象站统 一编号,N 为样本数。从表 1 中可知, $R_{n_{\text{ITP}}}$ 与 $R_{n_{\text{m}}}$ 的相关系数在 0.98 以上,且均通过显著性检验 (P<0.01),各站点 RMSE 在 1.29~1.77 之间,值 得注意的是, $R_{n_{\text{ITP}}}$ 均比 $R_{n_{\text{m}}}$ 偏大 12%~19%,主要 原因可能是在气象数据估算 R_s 时外辐射到达地表 的比例参数选用默认值(a_s = 0.25 和 b_s = 0.50)导 致 ITPCAS 驱动数据集中 R_s 比气象站基于日照时 数计算的 R_s 偏高,也可能是气象采样点和气象站并 不完全重合,存在着坡度、海拔和坡向等差异。综上, 通过该数据集估算的 R_n 可以较好的反映区域变化规 律,该再分析数据集在黄河源区有较好的适用性。

区站号	站名	$R_{n_{-}m}/$ (MJ • m ⁻² • d ⁻¹)	$\frac{R_{n_{\rm ITP}}}{(MJ \cdot m^{-2} \cdot d^{-1})}$	误差/ (MJ・m ⁻² ・d ⁻¹)	RMSE	R	Ν
52 943	兴海	7.99	9.08	1.09	1.35	0.99	13 514
52 955	贵南	8.56	9.79	1.23	1.60	0.98	13 514
56 033	玛多	8.52	9.83	1.32	1.65	0.98	13 514
56 043	果洛	8.57	10.02	1.46	1.70	0.99	13 514
56 046	达日	8.21	9.23	1.02	1.29	0.99	13 514
56 065	河南	8.65	9.86	1.21	1.52	0.98	13 514
56 067	久治	8.27	8.84	1.57	1.77	0.99	13 514

表1 再分析数据集估算 R_n的结果验证

Tab. 1	Accuracy assessment	result of R_n estimated	by ITPCAS	forcing data

3.2 黄河源区地表净辐射的变化特征

3.2.1 地表净辐射时间变化特征

精度检验后将 ITPCAS 驱动数据集和 GLASS 地表反照率数据集代入公式,得到 1979 — 2015 年 黄河源区逐日 R_n。对逐日数据进行处理,得到各

月、季、年 R_n数据。季节采用国内常用的气象季节 划分法,即上年 12 月至当年 2 月为冬季、3 月至 5 月为春季、6 月至 8 月为秋季。各月 R_n为月内每日 平均得到,各季节 R_n为相应月份 R_n的平均值,年平 均 R_n为逐月数据平均得到。 图 3 为 1979-2015 年黄河源区年、春季、夏季、 秋季、冬季平均 R_n 变化曲线。1979-2015 年黄河 源区年、春季、夏季、秋季、冬季多年平均 R_n 分别为 9.63、12.11、13.70、7.68 和 5.02 MJ・m⁻²・d⁻¹;其 最大值分别为 10.00(1997 年)、12.80(1980 年)、 14.59(1994 年)、8.07(1997 年)和 5.38(1983 年) MJ・m⁻²・d⁻¹;最小值分别为 9.12(2009 年)、 11.42(1989 年)、12.63(2009 年)、7.24(1988 年)和 4.76(2009 年)MJ・m⁻²・d⁻¹。

利用 Mann-Kendall 趋势分析方法得到黄河源 区年、四季 R,的变化趋势和统计值,见表 2。从表 2 可知,黄河源区年、四季 R。均呈下降趋势,每10年 变化幅度为-0.067 MJ • m⁻² • d⁻¹;春、冬季变化幅 度最大,每10年变化幅度为-0.075 MI • m⁻² • d⁻¹: 秋季变化幅度最小,每10年变化幅度为一0.039 $MJ \cdot m^{-2} \cdot d^{-1}; 夏、秋季没有通过显著性检验。通$ 讨 Mann-Kendall 非参数检验分析研究区年、春季、 夏季、秋季、冬季 R_{n} 突变点,得到结果:年 R_{n} 和冬季 R₁序列存在突变点,分别为2004年和2003年左右; 而其他季节 R_n突变点不明显。这可能与当地气候 变化和人类活动有关。2000年以后黄河源区呈现 "变暖变湿"的趋势,云量上升,降雨/雪增加,温度也 增加,植被NDVI也呈上升趋势。另外三江源自然 保护区于 2000 年成立,实施了一系列的生态保护与 建设工程,青海省也实施了人工增雨、治理草原鼠 害、退耕/牧还草和生态移民等"综合性"工程(2004 年)。这些都可能是年 R_n和冬季 R_n序列在 2004 年

和 2003 年左右存在突变的原因。

1979-2015 in study area

表 2 1979-2015 年研究区年、春季、夏季、秋季、冬季 R_n变化趋势统计表

Tab. 2 Statistics of trends of annual and seasonal mean R_nduring 1979-2015 in study area

时间序列	起始年份	终止年份	样本数量	Test Z	显著性	每 10 年变化幅度/(MJ • m ⁻² • d ⁻¹)
年 R _n	1979	2015	37	-2.68	* *	-0.067
春季 R_n	1979	2015	37	-2.31	*	-0.075
夏季 R_n	1979	2015	37	-1.14		-0.074
秋季 R_n	1979	2015	37	-1.03		-0.039
冬季 R_n	1979	2015	37	-3.60	* * *	-0.075

注:***通过显著性水平为 0.001 的检验;**通过显著性水平为 0.01 的检验;*通过显著性水平为 0.05 的检验。

图 4 为黄河源区年内各月平均 R_n 的变化趋势, 可知,区域平均 R_n 在年内呈单峰型,1~4 月上升迅速, 5 月达到最大值(14.31 MJ • m⁻² • d⁻¹),9 月份以后 R_n 开始快速下降,12 月份最小(3.34 MJ • m⁻² • d⁻¹)。通 过最大、最小值误差线可知,1979-2015 年 R_n 变化幅度 夏季大于冬季,其中 7 月份 R_n 变化幅度最大,变化范围 为 11.79~15.86 MJ • m⁻² • d⁻¹。 3.2.2 地表净辐射空间变化特征

对 1979-2015 年黄河源区逐栅格计算得到区 域上年、春、夏、秋、冬季 R_n和其变化幅度的空间分 布及分类面积统计,结果见图 5。

从图中可知,年和各季节 R_n的空间分布相似, 即不同季节对 R_n的空间分布影响不大,最大值分布 在扎陵、鄂陵湖及龙羊峡等大面积水域附近,最小值 分布在中部的阿尼玛卿山附近和共和盆地附近。年 和各季节 R_n的变化趋势的空间分布也相似,研究区 R_n以下降趋势为主,主要分布在研究区西部山区、 龙羊峡南部及共和盆地附近。研究区 R_n上升趋势 主要分布在中部的阿尼玛卿山附近和研究区东部的 零星区域,年、春、夏、秋、冬季 R_n上升趋势分别占流 域的 8.4%、15.8%、4.6%、44.1%和 0.0%。

3.2.3 海拔对地表净辐射的影响

 R_n 的空间分布与海拔分布呈现一定的统计规 律。将 DEM 数据重采样到 1 km 栅格,然后将该 DEM 分成 5 类对多年平均的年、春、夏、秋、冬季 R_n 和其变化比例的进行统计分析,见表 3。从表 3 中 可知, R_n 在 4 000~4 500 m 的区域内最大,而在 4 500 m 以上最小,这是因为 4 500 m 以上区域存在 积雪和冰川,地表反照率高,从而 R_n 较小。 *R*_n的变化幅度中除了秋季在3500~4000 m 区域内呈0.12%的上升趋势外,其余皆呈现下降趋势,年、春季和夏季*R*_n下降幅度最明显的区域为4500 m以上区域,秋季和冬季下降幅度最明显的区域为3000 m以下区域。

Fig. 4 Changes of monthly mean R_n in study area (The bars indicate the maximum and minimum monthly mean values)

	表 3	基于 DEM 分类的年、春、夏、秋、冬季 R _n 和其变化幅度的统计结果
Tab. 3	Statistic	s of annual and seasonal mean R_n and its variation based on DEM classification

の日本	面积比例 -	$R_{\rm n}/({ m MJ}\cdot{ m m}^{-2}\cdot{ m d}^{-1})$				毎 10 年 R _n 变化比例/%						
DEM 分尖		年	春季	夏季	秋季	冬季	-	年	春季	夏季	秋季	冬季
3 000 m 以下	2.6%	9.36	11.82	13.70	7.34	4.59		-0.66	-0.21	-0.66	-0.52	-2.01
3 000 \sim 3 500 m	16.0%	9.39	11.95	13.29	7.47	4.85		-0.78	-0.67	-0.79	-0.31	-1.72
3 500 \sim 4 000 m	26.1%	9.73	12.37	13.30	7.88	5.36		-0.57	-0.68	-0.61	0.12	-1.27
4 000 \sim 4 500 m	37.4%	9.82	12.32	13.92	7.96	5.07		-0.79	-0.80	-0.84	-0.13	-1.64
4 500 m 以上	17.9%	0.92	1.13	1.40	0.70	0.46		-0.96	-0.83	-1.07	-0.31	-1.84

4 讨 论

R_n的时空变化改变了区域地表天气和气候系 统的多样性、地表蒸散的速率及不同区域生态系统 的结构和功能。刘新安等^[1]对几种推算地表净辐射 的方法进行了评价;陈征等^[3]、叶晶等^[16]利用遥感 资料推算了个别地区的地表净辐射,高扬子等^[2]计 算了全国 699 个站点的地表净辐射,并分析了各分 量的空间分布特征,对中国地表净辐射做了较为系 统的分析。

有研究表明,1980 年以来全球 R_n 具有普遍的 下降趋势^[17],国内近 50 年来站点平均 R_n 在年、季 节均呈现较明显的下降趋势,每 10 年均降幅为 0. 74 W/m²(0.064 MJ • m⁻² • d⁻¹)^[2],本研究得到与 此结论一致。 影响特定区域 R_n时空变化特征的因素主要有 天文辐射、云、气溶胶、温度、土壤湿度和土壤植 被等^[2]。

有研究表明,云量不是造成中国区域短波辐射 下降的主要因素,大气中持续增多的气溶胶是主导 因素^[18]。大气气溶胶主要来自于化石燃料的燃烧、 工业生产等人为活动及火山爆发等自然现象。

自上世纪 80 年代以来,随着经济快速发展,化 石燃料的大量燃烧造成大气气溶胶的快速增加,这 可能是区域乃至全球 R_n持续下降的主要原因。

有研究表明,青藏高原积雪变化具有确定的长 期增加的趋势^[19],从而导致的青藏高原冬季净辐射 的显著降低,另外近年来由于环境污染和气候变化 等原因导致冬季的雾霾天气偏低,这也可能造成冬 季 *R*_n显著下降的原因之一。

图 5 1979-2015 年研究区年和四季平均 R_n以及对应的每 10 年 R_n变化幅度的空间分布 Fig. 5 Distribution of mean R_nvalues and its change rates every 10 years during 1979-2015 in study area

5 结 论

本文以黄河源区为例,利用 ITPCAS 气象要素 驱动数据集和 GLASS 地表反照率数据集,基于 FAO1998 年推荐的 Penman-Monteith 公式估算缺 资料地区长时间序列逐日 R_n,在再分析数据集估算 精度验证的基础上,用 GIS 空间分析技术与 Mann-Kendall 趋势分析方法揭示其时间动态特征与空间 演变规律。本文得到以下主要结论。

1)各站点 $R_{n_{.}ITP}$ 与 $R_{n_{.}m}$ 的相关系数均在 0.98 以上,且均通过显著性检验(P < 0.01),各站点 RMSE 在 1.29~1.77 之间,表明 ITPCAS 气象要 素驱动数据集在黄河源区有较好的适用性,通过该 数据集估算的 R_{n} 可以较好地反映区域变化规律,该 数据集可用于中国西北高寒山区缺资料地区。

2) 在 1979-2015 年期间年、春、夏、秋、冬季区域 平均 *R*_n的每 10 年下降幅度分别为-0.067、-0.075、 -0.074、-0.039 和-0.075 MJ • m⁻² • d⁻¹,其中夏、 秋季 *R*_n趋势没有通过显著性检验;年 *R*_n的变化趋 势在 2004 年左右存在突变点,冬季 *R*_n的变化趋势 在 2003 年左右存在突变点,其他季节突变点不明 显;区域平均 *R*_n在年内呈单峰型,1~4 月上升迅速, 5 月达到最大值(14.31 MJ • m⁻² • d⁻¹),9 月份以后 *R*_n 开始快速下降,12 月份最小(3.34 MJ • m⁻² • d⁻¹)。

3) 年和各季节 R_n值及变化趋势的空间分布相 似;年和各季节 R_n值最大值分布在扎陵、鄂陵湖及 龙羊峡等大面积水域附近,最小值分布在中部的阿 尼玛卿山附近和共和盆地附近;研究区 91.6%的面 积的年平均 R_n呈下降趋势,在季节尺度中,冬季 R_n 下降最明显,几乎 100%的区域处于下降趋势之中; 秋季 R_n下降最不明显(约 55.9%)。

4) 地形对 R_n 的空间分布产生一定的影响, R_n 在 4 000~4 500 m 的区域内最大,而在 4 500 m 以 上最小; R_n 的变化幅度中除了秋季在 3 500~4 000 m 区域内呈 0.12%的上升趋势外,其余皆呈现下降 趋势;年、春季和夏季 R_n 下降幅度最明显的区域为 4 500 m 以上区域,秋季和冬季下降幅度最明显的区 域为 3 000 m 以下区域。

本文对长时间序列的逐日逐栅格 R_n进行计算, 并进行时空趋势变化分析,为无资料地区今后开展 地表辐射研究、气候变化预测、生态系统蒸散发过程 和机理研究具有重要意义。由于缺少实测的 R_n观 测数据,在计算精度上存在一定的不确定性。另外 本文未定量分析造成黄河源区 R_n下降的主要驱动 因子,R_n的影响过程与机理需在今后研究工作中进 一步探讨。

参考文献:

- [1] 刘新安,于贵瑞,何洪林,等.中国地表净辐射推算方法的研究[J].自然资源学报,2006,21(1):139-145.
 LIU Xin'an, YU Guirui, HE Honglin, et al. Research on the calculating of surface net radiation in China [J]. Journal of Natural Resources, 2006, 21(1): 139-145.
- [2] 高扬子,何洪林,张黎,等.近50年中国地表净辐射的时空变化特征分析[J].地球信息科学学报,2013,15(1):1-10.
 GAO Yangzi, HE Honglin, ZHANG Li, et al. Spatiotemporal variation characteristics of surface net radiation in China over the past 50 years [J]. Journal of Geo-Information Science, 2013, 15(1): 1-10.
- [3] 陈征, 胡德勇, 蒋卫国, 等. 基于 GLASS 数据估算中 国陆表净辐射及其空间分布分析 [J]. 地理研究, 2016, 35(1): 25-36.
 CHEN Zheng, HU Deyong, JIANG Weiguo, et al. Land surface radiation budget parameterization and spatial analysis over China using GLASS data [J]. Geopraphical Research, 2016, 35(1), 25-36.
- [4] ALADOS I, FOYO-MORENO I, OLMO F J, et al. Relationship between net radiation and solar radiation for semi-arid shrub-land [J]. Agricultural and Forest Meteorology, 2003, 116(3/4): 221-227.
- [5] WANG Kaicun, LIANG Shunlin. An improved method for estimating global evapotranspiration based on satellite determination of surface net radiation, vegetation index, temperature, and soil moisture [J]. Journal of Hydrometeorology, 2008, 9(4): 712-727.
- [6] LLASAT M C, SNYDER R I. Data error effects on net radiation and evapotranspiration estimation [J]. Agricultural and Forest Meteorology, 1998, 91 (3/4): 209-221.
- [7] 武荣盛, 马耀明. 青藏高原不同地区辐射特征对比分析
 [J]. 高原气象, 2010, 29(2): 251-259.
 WU Rongsheng, MA Yaoming. Comparative analyses on radiation characteristics in different areas over the Tibetan Plateau [J]. Plateau Meteorology, 2010, 29 (2): 251-259.
- [8] OZGOREN M, BILGILI M, SAHIN B. Estimation of global solar radiation using ANN over Turkey [J]. Expert Systems with Applications, 2012, 39 (5): 5043-5051.
- [9] HOU Jiangtao, JIA Gensuo, ZHAO Tianbao, et al. Satellite-based estimation of daily average net radiation under clear-sky conditions [J]. Advances in Atmospheric Sciences, 2014, 31(3): 705-720.
- [10] FAUSTO M A, MACHADO N G, NOGUEIRA J DE

S, et al. Net radiation estimated by remote sensing in Cerrado areas in the Upper Paraguay River Basin [J]. Journal of Applied Remote Sensing, 2014, 8 (1): 083541.

- [11] BISHT G, Bras R L. Estimation of net radiation from the MODIS data under all sky conditions Southern Great Plains case study [J]. Remote Sensing of Environment, 2010, 114(7): 1522-1534.
- [12] 蓝永超,鲁承阳,喇承芳,等.黄河源区气候向暖湿转变的观测事实及其水文响应[J].冰川冻土,2013, 35(4):920-928.

LAN Yongchao, LU Chengyang, LA Chengfang, et al. The fact of climate shift to warm-humid in the source regions of the Yellow River and its hydrologic response [J]. Journal of Glaciology and Geocryology, 2013, 35(4): 920-928.

- [13] ZHANG Xiaotong, LIANG Shunlin, WANG Kaichun, et al. Analysis of global land surface shortwave broadband albedo from multiple data sources [J].
 IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3(3): 296-305.
- [14] LIU Qiang, WANG Lizhao, QU Ying, et al. Preliminary evaluation of the long-term GLASS albedo product [J]. International Journal of Digital Earth, 2013, 6(S1): 69-95.
- [15] ALLEN R G, PEREIRA L S, RAES D, et al. Crop e-

vapotranspiration-guidelines for computing crop water requirements [M]. FAO Irrigation and Drainage Paper 56. Food and Agriculture Organization of the United Nations, Rome, 1998, 300, 6541.

- [16] 叶晶,刘辉志,李万彪,等.利用 MODIS 数据直接估 算晴空区干旱与半干旱地表净辐射通量[J].北京大 学学报(自然科学版),2010,46(6):942-950.
 YE Jing, LIU Huizhi, LI Wanbiao, et al. Estimation of the net radiation over arid and semiarid areas only using MODIS data for clear sky days [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2010, 46 (6):942-950.
- [17] JIMENEZ-MUNOZ J C, SOBRINO J A, MATTAR C. Recent trends in solar energy and net radiation at global scale [J]. Ecological Modelling, 2012, 228(1): 59-65.
- [18] LIANG F, XIA X. Long-term trends in solar radiation and the associated climatic factors over China for 1961-2000 [J]. Annales Geophysicae, 2005, 23 (7): 2425-2432.
- [19] 李培基. 青藏高原积雪对全球变暖的响应 [J]. 地理 学报, 1996, 51(3): 260-265.
 LI Peiji. Response of Tibetan snow cover to global warming [J]. Acta Geographica Sinica, 1996, 51(3): 260-265.

(责任编辑 王绪迪)