DOI:10.19322/j. cnki. issn. 1006-4710. 2018. 04. 003

非均匀预紧载荷下轴承一轴系热特性的试验研究

吴文武^{1,2},洪 军²,李 旸²,李小虎³,张进华²

(1. 西安理工大学 教育部数控机床及机械制造装备集成重点试验室 & 陕西省制造装备重点实验室,陕西 西安 710048;
 2. 西安交通大学 现代设计及转子轴承系统教育部重点实验室,陕西 西安 710049;
 3. 西安交通大学 机械工程学院,陕西 西安 710049)

摘要: 合理的轴承预紧是保障轴系性能的关键所在。由于生产制造和装配误差的存在,容易导致 轴系中常用的定位和定压预紧方式形成非均匀预紧载荷。针对以上问题,开发了一种采用小型压 电测力传感器测量预紧力、由电主轴驱动的试验平台,可用于开展非均匀预紧载荷下轴承-轴系性 能试验研究。针对不同方向和大小的非均匀预紧力下的轴系热特性进行了试验,测试结果表明:1. 当非均匀预紧力导致弯矩增大时,均匀预紧下该平面上外圈温度值和温升被非均匀预紧下温度值 和温升完全包络。2. 对比非均匀预紧力,外界环境温度和散热型式对轴系温度场有更显著的影响。 受载轴承中接近热传导的区域,其温度明显低于轴承其他区域。该结果直接反映出非均匀预紧载 荷对轴承-轴系热特性的影响,同时为理论研究提供了数据支持。

关键词: 轴承预紧; 非均匀载荷; 热特性; 轴系性能 中图分类号: TH133.33 文献标志码: A 文章编号: 1006-4710(2018)04-0395-06

Experimental investigation of thermal characteristics of rotor-bearing system under non-uniform preload

WU Wenwu^{1,2}, HONG Jun², LI Yang², LI Xiaohu³, ZHANG Jinhua²
(1. Key Lab. of NC Machine Tools and Integrated Manufacturing Equipment of the Education Ministry & Key Lab of Manufacturing Equipment of Shaanxi Province, Xi'an University of Technology, Xi'an 710048, China; 2. Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, China; 3. School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China)

Abstract: Bearing preload plays a vital role in the performance of rotor-bearing system. In general, bearing will be applied with non-uniform preload due to the manufacturing and assembly error. A novel rotor-bearing setup, which includes the small piezoelectric sensor to measure the preloading force and the motorized spindle for driving, is developed to investigate the effect of non-uniform preload on the performance of rotor-bearing system. According to the performance of ball bearings, the experiments including different magnitudes and positions of forces are conducted. From the testing results, it can be concluded as follows: 1. The temperature of out ring of bearing under uniform preload is lower than that under non-uniform preload while the moment increasing due to the non-uniform preload. 2. Compared with non-uniform preload, the environment temperature and the type of heat dissipation show a greater impact on the temperature of loading bearing in the rotor-bearing system, the positions of bearing which close to the area of heat conduction keep the lowest temperature on the rotor-bearing system in the whole tests. These results illustrate the effect of non-uniform preload on the thermal characteristics of rotorbearing system and provide data for the theoretical research.

Key words: bearing preload; non-uniform preload; thermal characteristics; the performance of rotor-bearing system

收稿日期: 2017-06-30

基金项目:国家自然科学基金资助项目(51575434,51406165)

作者简介: 吴文武,男,博士,研究方向为高端装备精准数字化装配理论与方法。E-mail:wuwenwuxjtu@qq.com

轴系故障主要由转子不平衡和不对中等引起, 其中不对中故障占轴系故障的 60%以上^[1]。当轴 系运行在不对中状态下时,轴系将产生轴承剧烈磨 损、轴系振动和轴的挠曲变形等一系列问题,严重危 害到系统的稳定运行^[2]。因此,国内外学者针对轴 系不对中问题,开展了包括理论建模^[3]、仿真模拟^[4] 和试验测试^[5-6]等多方面的研究工作,现有工作重点 研究了由于联轴器装配偏差导致的轴系角度偏斜、 平行偏斜和混合偏斜下轴系的性能变化。对于正常 对中情况下,由于生产或装配造成的轴系内部非均 匀载荷对轴系性能的影响规律研究较少^[7]。

轴系中常用的定位预紧和定压预紧,其预紧力 在轴承上都是均匀施加。但在实际生产应用中,由 于隔圈尺寸偏差、装配误差、弹簧刚度不一致等会引 起轴承游隙非均匀分布,造成轴承游隙的调整量不 尽相同,进一步将在轴向造成轴承内圈与轴、轴承外 圈与轴之间的不同轴,在径向将造成轴承与轴不同 心,从而导致轴承的非均匀预紧载荷。轴承预紧载 荷的改变将直接影响其热特性,严重时甚至导致轴 承的热咬合,对轴承进行热分析并掌握轴承的热态 特性对提高轴系运行的稳定性和可靠性都是极其重 要的。国内外学者运用有限元^[8]、热阻网络^[9-10]等 方法,对轴承自身发热、热传递与扩散、温度场等已 经做了深入的研究。然而,现有研究中采用了大量 的经验公式,如热传递、预紧膨胀变形等,这些研究 对于揭示非均匀预紧载荷与轴承热特性之间的关系 还远远不够。

本文开发了一种采用小型压电测力传感器进行 预紧力实时测量的轴系性能试验平台^[11]。该平台 采用电主轴驱动,可实现非均匀预紧载荷下,轴承-轴系性能试验研究。基于此平台,对不同方向和大 小的非均匀预紧力对轴系热特性的影响开展试验研 究。试验结果可以最直接地反映出非均匀预紧载荷 对轴承-轴系热特性的影响规律,同时也可以为后续 的理论研究提供数据基础。

1 试验台配置及试验设计

1.1 试验台配置

1.1.1 试验台

试验台的具体配置型式见图 1,采用电主轴作 为驱动装置,通过柔性联轴装置带动试验台轴系转 动。轴系的预紧力由六个均匀布置在前轴承支座端 盖上的加载螺栓施加,所施加的预紧力由放置于轴 承外圈和加载螺栓之间的压电力传感器进行实时测 量。为了研究不同非均匀载荷下的轴系性能变化, 同时考虑到方便进行理论计算结果的验证,本装置 中采用了前后均为单轴承的背靠背配置型式。该轴 承配置型式便于实现轴承的非均匀载荷施加,同时 消除了多轴承之间的相互作用对结果的影响。

(a) 示意图

(b) 实物图 图 1 轴系性能试验台 Fig. 1 The experimental setup of rotor-bearing

1.1.2 驱动系统

试验台选用快速制造国家工程中心开发的最高 转速为15000 r/min 的高速电主轴单元作为驱动装 置。该电主轴单元驱动器采用闭环伺服控制,可确 保该试验台能在各转速下稳定精确地运行。驱动电 主轴的各项技术参数详见表1。

表1 驱动电主轴参数

Tab. 1 The par	rameters of the spindle
参数	技术指标
功率	11.5 kW
最高转速	15 000 r/min
额定电流	19 A
端部静态跳动	$\leqslant 3\mu$
温升	外壳温升≪25℃
动平衡等级	G1 级

1.1.3 测力系统

试验台中,采用压电力传感器进行预紧力的实 时测量,具体型号为 PACE line-CFT/5KN(HBM), 其精度为 0.01N,灵敏度为-7.7pC/N。为了实现 滚动轴承的非均匀分布预紧力调控,设计了一个周 向均匀分布且具有阶梯孔的套环,使之与轴承外圈 环面贴合,把加载头和压电致动器先后放置在这些 孔内,后端用加载螺栓固定,见图 1(a)。在实际使 用中,通过调整 6 个加载螺栓进行非均匀分布预紧 力的模拟,从而实现对轴承施加非均匀分布的预紧 载荷。

1.1.4 测温系统

温度采集系统采用日本横河 YOKOGAWA-MX100,其模块配置灵活、扩展性,采用以太网通 讯。为了减小高速运转对测试结果的影响,试验台 中采用 Pt100 温度传感器,其主要优点是抗震性能 好、稳定性高、准确度高。传感器主要技术参数见 表 2。

	表 2	Pt100 温度传感器主要技术参	参数
Tab. 2	The pa	rameters of the temperature	sensor Pt100

参数	技术指标
测量范围	$-200^\circ\!\!\mathrm{C}{\sim}{+}850^\circ\!\!\mathrm{C}$
允许偏差值 △℃	A 级±(0.15+0.002 t) B 级±(0.30+0.005 t)
允许通过电流 热响应时间	\leqslant 5 mA <30 s

1.1.5 测温点布置

为了获取试验台全面的温度信息,选用了 MX100温度测试装置中的10个通道(测点)进行测 试。其中通道1~3为磁吸式Pt100温度传感器,通 道4~10为非磁吸式Pt100温度传感器。通道1和 2分别用于测量环境温度和工作台表面温度,通道3 用于测量非均匀载荷施加端外壳温度。通道4~9 用于测量非均匀和载轴承的外圈端面各点处的温 度。通道10用于测量非均匀载荷下轴承外圈表面 温度。通道4~9的温度传感器具体布置见图2。

图 2 测温点布置示意图 Fig. 2 The layout of the temperature sensing point

1.2 试验设计

试验中采用的轴承为钢球轴承 NSK 7210 CTYNSUL/P4,该轴承在脂润滑条件下的极限转 速为16 500 r/min。试验台中采用背靠背配置型 式,承受均匀重载预紧时,轴承的速度系数为 0.55, 因此在均匀预紧下,主轴实际最大运行转速约为 9 000 r/min。考虑到非均匀载荷的影响,试验中主 轴的最大运行速度选为 6 000 r/min。见图 2,由于 轴承的轴对称结构,可以看出当非均匀载荷作用在 轴承上加载点1和点4的时候,在不考虑重力的条 件下,其对轴承的载荷分布的影响相似,只是方向相 反。同样对于加载点2、3、5、6而言,存在同样的现 象。因此,本文中重点研究加载点4、6的非均匀载 荷对轴承性能的影响。本文中所采用的非均匀载荷 试验工况见表3,其中初始预紧和均匀预紧由2、4、6 三个加载点均分施加,非均匀预紧由各加载点单独 施加。为了消除试验台残余热量对测试结果的影 响,每天只进行一组温度测试。每组试验温度测试 时间为2.5小时,温度采集系统的采样频率设为1 Hz,每个试验的采样点数总计为9000点。

	表 3	轴承-轴系温度试验工况
Tab. 3	The	test conditions for rotor-bearing
		in temperature test

序号	代号	载荷 类型	载荷 作用点	初预 紧/N	预紧/ N	转速/ (r・min ⁻¹)
1	U	均匀	2,4,6	200	1 000	2 000
2	NU4	非均匀	4	200	1 000	4 000
3	NU6	非均匀	6	200	1 000	6 000

2 结果与讨论

2.1 均匀预紧结果

图 3 为轴承承受 1 000 N 均匀预紧力时,转速 分别为 2 000 r/min、4 000 r/min 和 6 000 r/min 时,试验台各个温度测试点的结果曲线。由图 3 可 知,在不同转速下,试验台中加载端轴承温度随着时 间的推移逐渐增加,升温速率逐渐减小。这是由于在 运行初始阶段轴承运转形成的热量集中在轴承部位, 并不断由主轴、轴承座通过热对流和热传导等方式进 行散热,使得轴系逐渐到达热平衡。测试过程中,随着 时间的推移,环境温度缓慢升高,改变了试验台运行 的外部环境,因此试验台的平衡状态不断发生改变, 导致试验台长时间难以稳定。对比均匀预紧下,转 速分别为2000 r/min 和4000 r/min 的温度结果可 知,低速运行工况下,转速对试验台中轴承温度的影 响不明显。由轴承发热计算方法可知[8],随着转速 的升高,轴承发热量不断增加。当轴承低速运转时, 转速对轴承发热的影响小于高速运转时。对比图 3 (a)和图 3(b)可知,转速为 2 000 r/min 时的环境温 度的变化大于转速为4000 r/min 时,因此导致测点 5 和 6 处获得的轴承外圈温升大于转速为 4 000 r/min时对应测点的温升。同时,由图 3 可 知,三种转速下进行温度测试的初始环境温度分别 约为 26 ℃、27 ℃、25.5 ℃。

Tab. 5

The

表 4~6 分别为均匀预紧下,转速为 2 000 r/min、 4 000 r/min 和 6 000 r/min 时候的各个测点温度统计 结果。对比 2 000 r/min 和 4 000 r/min 时的温升,可 以发现,环境温升下降了 0.3 °C,各个测点温升最大 下降了 0.2 °C,说明 4 000 r/min 时轴承外圈温升大 于2 000 r/min。由表 4~6 可以看出,测点 4、9 与测 点 7、8 的温升差 0.1 °C,但在理想状态下,由于轴承 以及试验台的对称性,四个测点的温升应该相同。 究其原因,是由于装配过程中的偏差造成的。轴承 外圈表面温度(测点 10)大于轴承外圈端面温度(测 点 4~9)。

2.2 非均匀预紧载荷的影响分析

由图 3 和表 4~6 可知,低速下轴承温度变化不明 显,因此本节只分析 4 000 r/min 和 6 000 r/min 时,非 均匀预紧对轴承温度的影响。图 4 是非均匀载荷 NU6 与均匀载荷 U下,转速分别为 4 000 r/min 和 6 000 r/min时测点 4~9 的温度对比结果。在不考虑初始 环境温度影响时,非均匀预紧 NU6 的测点 4~9 的温 度最大值明显大于均匀预紧的对应值。由于非均匀 预紧下形成额外弯矩,导致轴承发热量大于均匀预 紧,因此非均匀预紧下轴承各个测点的温度最大值对 均匀预紧对应值形成包络。由图4可知,非均匀载荷 下的各个测点温度最大值明显大于均匀预紧,因此可 以认为相对于速度对轴承温度的影响,非均匀载荷对 温度的影响更加显著。在 4 000 r/min 和 6 000 r/min 时,非均匀载荷 NU6 都使得轴承呈现出明显的偏载 效果,由于测点7和8位于加载点6的两侧,因此其 温度最大值明显大于测点4、5、6、9。这是由于,加载 点6处的非均匀载荷,会形成通过该点的合弯矩,从 而导致该区域轴承内外圈和球的接触应力升高,发热 量增加,提高了该区域轴承温度。

表 4 均匀预紧 2 000 r/min 时各测点温度统计

1 up , $1 \text{ includuling pointo tompolatate of the rotor pouring system with annother prevative 2 0000 \text{ mm}$	Tab. 4	The measuring	points ten	perature of the	rotor-bearing	system with	uniform	preload (s	peed = 2	000 r/min)
--	--------	---------------	------------	-----------------	---------------	-------------	---------	------------	----------	------------

米王	各通道号(测点号)对应的温度统计值/℃									
天堂	1	2	3	4	5	6	7	8	9	10
平均值	26.6	26.7	26.5	27.9	27.7	27.5	28.0	28.1	27.7	28.1
最大值	27.2	27.4	27.1	28.9	28.6	28.4	29.0	29.0	28.7	29.1
最小值	25.9	26.0	25.9	26.0	25.9	25.9	26.0	25.9	25.7	26.0
温升	1.3	1.4	1.2	2.9	2.7	2.5	3.0	3.1	3.0	3.1

表 5 均匀预紧 4 000 r/min 时各测点温度统计

measuring points temperature of the rotor-bearing system with uniform preload (speed = 4000 r/mir	neasuring	points temperature	of the rotor-	bearing system	with uniform	preload	(speed = 4 000 r	/min)
---	-----------	--------------------	---------------	----------------	--------------	---------	------------------	-------

米王										
关型	1	2	3	4	5	6	7	8	9	10
平均值	27.6	27.7	27.5	29.2	28.9	28.8	29.4	29.3	29.0	29.4
最大值	28.1	28.3	28.0	30.0	29.6	29.6	30.2	30.1	29.8	30.3
最小值	27.1	27.2	27.1	27.2	27.1	27.1	27.2	27.1	26.9	27.2
温升	1.0	1.1	0.9	2.8	2.5	2.5	3.0	3.0	2.9	3.1

表 6 均匀预紧 6 000 r/min 时各测点温度统计

Tab. 6 The measuring points temperature of the rotor-bearing system with uniform preload (speed=6 000 r/min)

米王	各通道号(测点号)对应的温度统计值/℃									
天堂	1	2	3	4	5	6	7	8	9	10
平均值	25.9	25.9	25.9	28.7	28.4	28.1	28.8	28.9	28.4	29.0
最大值	26.6	26.6	26.5	29.9	29.6	29.3	30.0	30.1	29.7	30.3
最小值	25.3	25.3	25.3	25.4	25.3	25.3	25.4	25.4	25.1	25.4
温升	1.3	1.3	1.2	4.5	4.3	4.0	4.6	4.7	4.6	4.9

--**ロ**--U-4000最大值

图 5 是试验台加载端轴承温度测点 4~9 减去 初始环境温度后,均匀预紧 U 和非均匀预紧 NU6 的温升对比结果。

图 5 温升雷达图 Fig.5 The radar map of the temperature rise

对比测点 4~9 的温度最大值结果,可以发现温 升结果中,非均匀载荷对温度的影响明显减小,这进 一步说明了环境温度对轴系热性能具有显著的影 响。分别比对 4 000 r/min 和 6 000 r/min 时,均匀 预紧和非均匀预紧的测点 4~9 温升结果,可以发 现,在相同转速时,非均匀预紧下的温升对均匀预紧 下的温升形成包络。不同转速下非均匀预紧 NU6 的温升结果同样体现出明显非均匀偏载效应。

2.3 换热型式的影响分析

图 6 为两种非均匀预紧工况(NU6 和 NU4) 下,通道 1~10 的温升变化结果。由图 6 可知,在轴 承外圈端面的各个测点中,测点 5 和 6 处的温升最 小。由图 1~2 可知,非均匀预紧 NU4 中,施加非均 匀预紧载荷的加载点 4 靠近轴承座与工作台连接处, 其传热类型为热传导。由表 3~5 可知,位于加载点 4 附近的两个温度测点 5 和 6,其温度和温升均小于相 同工况下测点 4、7、8、9 的值。通过加载点 6 所施加 的非均匀载荷,在 4 000 r/min 和 6 000 r/min 转速 下,温升值均大于加载点 4 所施加的非均匀载荷。 对于轴承发热而言,由于轴承的轴对称布置,相同载 荷下,轴承的发热相同。由此可知,热传导对试验台 的散热具有显著的影响。

2.4 讨 论

轴系温度场主要受外界环境温度和散热体系的 影响,热传导的影响明显大于热对流的影响。热传 导越多的地方,轴系温度越低。热对流越多的地方, 轴系温度越高。

非均匀预紧载荷形成的合弯矩决定了轴承接触 应力的分布形态,也决定了轴承的温度分布,接触应 力越大的区域,温度越高。对于机械主轴,其主要热源只有轴承,因此在没有强制冷却的情况下,其温度场的分布取决于轴承的温度场分布。在试验中,由于试验台同时存在热对流和热传导,因此在某些工况下,非均匀载荷对轴系温度的影响不够明显。

非均匀加载与均匀加载下的发热率均随着转速 的增大而增大,且当非均匀预紧加载导致总弯矩增 大时,总发热率会高于均匀预紧加载,转速越高,差 距越明显。相比于均匀预紧,非均匀预紧产生的额 外弯矩,使得均匀预紧下轴承端面温度最大值被非 均匀预紧下所对应的温度最大值完全包络。

3 结 论

本文针对非均匀预紧载荷问题,搭建了以微型 力传感器和细牙螺纹为主要控制结构的预紧力性能 试验平台,试验研究了非均匀预紧对轴系温度的影 响。主要结论如下.

 由于装配误差等的存在,轴系中轴承会处于 非均匀预紧载荷作用下,并导致轴承外圈温度的非 均匀分布。

2)由于非均匀预紧载荷会在轴承上产生附加 弯矩,使得轴承总发热率增加,轴承温度大于相同工 况下的均匀预紧,并体现出明显的非均匀温度分布 情况。非均匀温度场中的高温区域取决于非均匀预 紧形成的附加弯矩方向。

3)轴系中轴承的温度场分布不仅受到非均匀 载荷的影响,同时环境温度和传热类型也有显著影 响。轴系中热传导部位的散热性能明显优于热对流 部位。

参考文献:

[1] 刘占生,赵广,龙鑫.转子系统联轴器不对中研究综述 [J]. 汽轮机技术,2007,49(5):321-325.

LIU Zhansheng, ZHAO Guang, LONG Xin. Survey of the research on coupling with misalignment of rotary machinery [J]. Turbine Technology, 2007, 49(5): 321 -325.

[2] 刘杨,太兴宇,赵倩,等.转子系统不对中-碰摩耦合故 障的动力学特性[J].东北大学学报(自然科学版), 2013,34(4):564-568.

LIU Yang, TAI Xingyu, ZHAO Qian, et al. Dynamic characteristics of misalignment-rubbing coupling fault for rotor system [J]. Journal of Northeastern University (Natural Science), 2013, 34(4): 564-568.

- [3] LI Changyou, XU Minqiang, GUO Song, et al. Modelbased degree estimation of unbalance and misalignment in flexible coupling-rotor system [J]. Chinese Journal of Mechanical Engineering, 2009, 22(4): 550-556.
- [4] LEE Y S, LEE C W. Modeling and vibration analysis of misaligned rotor-ball bearing systems [J]. Journal of Sound and Vibration, 1999, 224(1): 17-32.
- [5] WAN Zhao, JING Jianping, MENG Guang, et al. Theoretical and experimental study on the dynamic response of multi-disk rotor system with flexible coupling misalignment [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2012,226(12): 2874-2886.
- [6] GANESAN S, PADMANABHAN C. Modeling of parametric excitation of a flexible coupling-rotor system due to misalignment [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2011, 225(12): 2907-2918.
- [7] WU Wenwu, HONG Jun, LI Xiaohu, et al. The nonuniform preloading effect on stiffness behaviour of angular contact ball bearings [C] // ASME Conference Proceedings. Houston, TX, USA: ASME, 2012: 1521 -1528.
- [8] WU Wenwu, LI Xiaohu, XU Feng, et al. Investigating effects of non-uniform preload on the thermal characteristics of angular contact ball bearings through simulations [J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2014, 228(6): 667-681.
- [9] 黄东洋,洪军,张进华,等. 热阻网络法在轴系温度场 求解中的应用 [J]. 西安交通大学学报,2012,46(5): 63-66.

HUANG Dongyang, HONG Jun, ZHANG Jinhua, et al. Thermal resistance network for solving temperature field in spindle system [J]. Journal of Xi'an Jiaotong University, 2012, 46(5): 63-66.

- [10] POULY F, CHANGENET C, VILLE F, et al. Investigations on the power losses and thermal behaviour of rolling element bearings [J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2010, 224(9): 925-933.
- [11] 李小虎,洪军,吴文武,等. 一种通用性强的主轴系 统动静态性能测试综合试验台: ZL2012103494 17. X [P]. 2013-01-09.

(责任编辑 王绪迪)