DOI:10.19322/j. cnki. issn. 1006-4710. 2018. 03. 011

# 湿地污染物迁移扩散数值模拟

王丹丹<sup>1</sup>,冯民权<sup>1</sup>,孙小平<sup>2</sup>,焦 梦<sup>1</sup>

(1. 西安理工大学 西北旱区生态水利工程国家重点实验室培育基地,陕西 西安 710048;2. 山西省水利水电科学研究院,山西 太原 030002)

摘要:为研究湿地对污染物的迁移降解效果,以汾河一坝人工湿地为研究区域进行研究。基于现 有自然湿地,采用湿地生态动力学模型,分析了氨氮、总磷在湿地中的迁移降解情况。通过模拟,发 现污染物随水流向出口推移其浓度逐渐降低,氮磷污染物的变化规律基本一致。模拟时间3h污 染物影响带到达出口,氨氮降解率为43.3%,总磷降解率为30.9%。该模型考虑了污染物的形态 细致划分和转化途径,对认识污染物在湿地中的迁移规律有重要意义。

关键词:湿地;生态动力学模型;数值模拟

中图分类号: X52 文献标志码: A 文章编号: 1006-4710(2018)03-0314-07

## Numerical simulation of migration and diffusion of pollutants in wetland

WANG Dandan<sup>1</sup>, FENG Minquan<sup>1</sup>, SUN Xiaoping<sup>2</sup>, JIAO Meng<sup>1</sup> (1. State Key Laboratory Base of Eco-hydraulic Engineering in Arid Area, Xi'an University of Technology, Xi'an 710048, China; 2. Shanxi Province Water Resources and Hydropower Research Institute, Taiyuan 030002, China) **Abstract:** To study the migration and degradation of pollutants in wetlands, the artificial wetlands of Dam No. 1 of Fen River is studied. Based on the existing natural wetland conditions, the wetland ecological dynamics model is used to analyze the migration and degradation of ammonia nitrogen and total phosphorus in wetland. Through the simulation, it is found that the concentration of pollutants decreased gradually with the flow of water, and that the changes of nitrogen and phosphorus pollutants are basically the same. Pollutant influence ranges to the exit when the simulation time is 3 hours. The degradation rate of ammonia nitrogen is 43.3% and the degradation rate of total phosphorus 30.9%. The model takes into account the meticulous division and transformation of pollutants, which is of great significance to understand the migration laws of pollutants in wetlands.

Key words: wetland; ecological dynamics model; numerical simulation

近年来,湿地由于低投资、低耗能和美观等特点,广泛应用于不同水体的水质净化和水环境富营养化防治中,取得了良好的环境经济效益<sup>[1-2]</sup>,构建人工湿地已成为恢复生态水质的关键措施之一。各国学者对于湿地中污染物去除通常采用数学模型进行定量化研究,常用的4种模型即衰减方程模型、一级动力学模型、Monod模型以及生态动力学模型、一级动力学模型、Monod模型以及生态动力学模型,确立了C、N、DO等的循环过程,为污染物转化提供了依据<sup>[3]</sup>;Vymazal<sup>[4]</sup>通过生态动力学模型得到不同季节人工湿地中TN、TP等的去除率,作为人工

湿地运行的参考依据。国内学者李亚静等<sup>[5]</sup>通过实 验与 STELLA 系统动力学的结合得到了垂直流人 工湿地脱氮效果,为废水出水浓度预测提供了依据 基础;唐美珍等<sup>[6]</sup>采用 Monod 动力学模型对复合垂 直流人工湿地污染物的去除效果进行了模拟验证, 得到了最优水力停留时间关系曲线;王子珏等<sup>[7]</sup>建 立了生态动力学模型对湿地中氮素的迁移转化进行 模拟,确定了湿地除氮机制;付国楷等<sup>[8]</sup>通过一级反 应动力学研究不同人工湿地形式对城市污水厂二级 出水中的污染指标的去除率,得到其最优负荷下的 去除率及最优人工湿地形式。

收稿日期: 2017-04-08

基金项目: 国家自然科学基金资助项目(51679191);山西省水利科学技术研究与推广资助项目(2014-6)

作者简介: 王丹丹,女,硕士生,研究方向为水环境模拟与预测。E-mail:810394144@qq.com

通讯作者:冯民权,男,教授,博导,博士,研究方向为水环境模拟与污染控制。E-mail:mqfeng@xaut.edu.cn

脱氮、除磷效果是目前湿地研究的重点,但大多数研究没有全面掌握污染物去除的内在机制和氮磷 污染物在湿地中的迁移分布规律。本研究基于对人 工湿地中污染物形态的细致划分,同时考虑到湿地 系统中的协调和拮抗作用,对每一个污染物的转化 均采用独立的方程与相应参数进行描述,能够更为 系统、准确的对氮、磷输运及其分布规律进行模拟 预测。

# 1 理论与方法

# 1.1 模型控制方程

模型的控制方程由水动力和水质两个模块组成:其中水动力控制方程指水平尺度远大于垂直尺度时,水深、流速等水力参数沿垂直方向的变化很小。因此,三维流动的控制方程沿水深积分并取水深平均,得到二维质量和动量守恒控制方程组。

质量守恒方程为:

$$\frac{\partial \zeta}{\partial t} + \frac{\partial p}{\partial x} + \frac{\partial q}{\partial y} = \frac{\partial d}{\partial t} \tag{1}$$

x 方向动量方程为:

$$\frac{\partial p}{\partial t} + \frac{\partial}{\partial x} \left(\frac{p^2}{h}\right) + \frac{\partial}{\partial y} \left(\frac{pq}{h}\right) + gh \frac{\partial \xi}{\partial x} + \frac{gp \sqrt{p^2 + q^2}}{c^2 h^2} - \Omega \cdot p - f(V) \cdot V \cdot V_x = 0$$
(2)

y方向动量方程为:

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial y} \left(\frac{q^2}{h}\right) + \frac{\partial}{\partial x} \left(\frac{pq}{h}\right) + gh \frac{\partial \xi}{\partial y} + \frac{gq \sqrt{p^2 + q^2}}{c^2 h^2} - \mathbf{\Omega} \cdot q - f(V) \cdot V \cdot V_y = 0 \quad (3)$$

式中:h(x,y,t)为水深(m); d 为净水深(m);  $\xi(x, y,t)$ 为自由水面水位(m);p(x,y,t)、q(x,y,t)为 x,y方向的单宽流量(m<sup>3</sup>/(s • m)); C(x,y)为 Chezy 阻力系数(m<sup>1/2</sup>/s); g 为重力加速度(m/s<sup>2</sup>); f(V)为风摩擦因数;  $\Omega(x,y)$ 为 Coriolis 系数  $\Omega$ =  $3\omega \sin \Psi, \omega$  为地球自转角速度,  $\Psi$  为计算点所处的 纬度; x, y 为空间坐标(m); t 为时间(s); V 为沿水 深的平均流速(m/s);  $V_x$ 、 $V_y$ 为x、y方向的速度分 量(m/s)。

水质控制方程,基于过程描述与水动力模型集成,有独立的参数描述方程,其中氮、磷描述方程分 別由式(4)、式(5)表示。

$$\frac{\partial NH_3}{\partial t} = Y_{BOD} \cdot K_3 \cdot BOD \cdot \theta_3^{(T-20)} \cdot \frac{DO}{DO + HS\_BOD} - K_4 \cdot NH_3 \cdot \theta_4^{(T-20)} - UN_P \cdot (P - R_1 \cdot \theta_1^{T-20}) - UN_b \cdot K_3 \cdot BOD$$

$$\theta_{3}^{(T-20)} \cdot \frac{NH_{3}}{NH_{3} + HS_NH_{3}} + UN_{P} \cdot R_{2} \cdot \theta_{2}^{(T-20)}$$

$$(4)$$

$$\frac{\partial PO_{4}}{\partial t} = K_{3} \cdot BOD \cdot Y_{2} \cdot \theta_{3}^{(T-20)} \cdot$$

$$\frac{PO_4}{PO_4 + HS\_PO_4} - UP_P \cdot (P - R_1 \cdot \theta_1^{(T-20)}) \cdot F(N, P) - UP_b \cdot K_3 \cdot BOD \cdot \theta_3^{(T-20)} \cdot \frac{PO_4}{PO_4 + HS\_PO_4} - UP_P \cdot R_2 \cdot \theta_2^{(T-20)}$$
(5)

式(4)表示氨氮值等于有机物所释放的氨减去 转化成亚硝酸盐的氨氮、植物所摄取的氨氮、细菌微 生物分解的氨氮,再加上异养呼吸产生的氨氮的结 果值。式(5)表示磷值等于有机物释放的磷减去植 物所摄取的磷、细菌微生物分解的磷及异养呼吸消 耗的磷的结果值。式中YBOD为有机物中的氮含量 (mgNH<sub>3</sub>-N/mgBOD);K<sub>3</sub> 为 20℃有机质降解常数 (1/d); $\theta_3^{(T-20)}$ 为Arrhenius温度系数; $K_4$ 为硝化速率 (1/d); $\theta_4^{(T-20)}$ 为硝化速率温度系数; $UN_P$ 为植物吸 收氨速率(mgN/mgO<sub>2</sub>); P 为植物光合作用能量;  $R_1$ 为植物光合作用速率常数;6(T-20)为光合作用温度系 数;R2 为异养呼吸速率常数;62<sup>T-20)</sup> 为异养呼吸作用 温度系数; $UN_{i}$ 为细菌吸收氨速率(mgN/mgBOD);  $HS_NH_3$ 为细菌摄取 N 半饱和浓度(mgN/L);  $UP_P$  为植物吸收磷速率(mgP/mgO<sub>2</sub>); F(N, P) 为 营养限制对光合作用影响;UP。为细菌吸收磷速率 (mgP/mgBOD); HS\_PO4 为细菌摄取 P 半饱和浓 度(mgP/L)。

#### 1.2 模型配置

汾河中下游是汾河流域的关键及典型区域,由 于流域内生态和水环境失衡导致河流水质污染严 重。汾河一坝人工湿地位于汾河中游,污水来源为 生活污水,湿地主要污染物为氨氮和磷,设计污水量 为 300 m<sup>3</sup>/d。研究区湿地面积 600 m<sup>2</sup>,湿地采用砖 砌墙分隔,系统由池内填料(砾石、砂土、种植土)、水 深植物、配水系统和排水系统组成。湿地内种植芦 苇 9 株/m<sup>2</sup>,植物吸收污染物使水质得到净化。污 水经湿地处理后最终流入汾河(见图 1)。



图 1 湿地平面图 Fig. 1 Wetland floor plan

本研究选取湿地单元为计算区域,采用非结构 网格流场模拟,即将模拟区域划分为三角形网格进 行剖分,最终共划分网格 1 140 个,节点 621 个。根据地形高程数据内插网格节点高程,由 Crick 插值法得到详细的湿地地形图(见图 2)。

316



图 2 湿地地形图 Fig. 2 Wetland topographic map

输入网格文件后,进行模型参数设置。计算中 涉及到的主要模型参数的设置情况如下。

1)本研究湿地在经度和纬度上跨度很小,因此 主要考虑涡粘系数和糙率系数。涡粘系数可提高模 型数值计算的稳定性,其计算采用 Smagorinsky 公 式。糙率系数通过模型率定、验证确定,并参照一定 的经验,水动力学模型中可根据实际情况糙率取值。 本次研究的人工湿地考虑湿地基质层对水动力的影 响如下:经分析颗粒级配对湿地的影响主要体现在 渗透性上,而基质渗透性、孔隙率与植物的根系生 长、死亡有关<sup>[9]</sup>,又植物对湿地的影响最终反映为糙 率和对污染物的吸收系数,故认为基质、植物最终反 映为一个值即糙率系数。

2)边界条件:水动力中存在两种边界即陆地边 界与开边界。本研究中将湿地东西面设置为陆地边 界,并将湿地入水及湿地出水设置为开边界。

3)水质模型参数:研究区域氮磷超标严重,为实 现水环境生态准确模拟,创建了氨氮、总磷2个状态 变量。图3可以看出氮磷污染物在水中的生化反 应,主要考虑硝化速率、植物吸收氨的速率、细菌吸 收氨的速率、摄取N的半饱和浓度、植物吸收磷的 速率、细菌吸收磷的速率、摄取P的半饱和浓度在 模型中的影响,其余参数均取默认值。另外作用力 包括温度、盐度、水深、当前流速,其中温度和盐度从 外界输入,其余的均从水动力模块中获取。





## 1.3 模型率定及验证

本研究采用 2016 年 5~6 月的水位、流量及湿 地进出口浓度,对模型进行参数率定及验证。为确 保模型计算的稳定性且结合一次性计算耗时,用较 合理的时间步长 300 s进行模拟。其中水动力模块 上边界采用 5~6 月湿地进口流量过程,下边界采用 湿地出口的水位过程。选取湿地进出口为源汇项, 给定对应实测流量值。2016 年 5 月份水位的率定 结果见图 4。



为确定参数的可靠性进一步选取 6 月份水位进 行模型验证,水位模拟结果与实测数据对比见图 5。 最终得到水动力模块涡粘系数为 0.28 m<sup>2</sup>/s,糙率 为 0.036。由图 5 可以看出,模型计算出的成果和 实测成果的吻合度较高,经计算其均方根误差为 0.082,平方相关系数为 0.908,表明模型采用的参 数合理可用,可以确定模型能够为后续水质模拟提 供良好的水动力学基础。



图 5 湿地出口水位验证成果 Fig. 5 Wetland outlet level verification achievements

水质模块设置首先建立初始浓度分布场文件, 其次输入5~6月实测湿地入口浓度作为上边界初 始浓度,并输入相应水质模拟参数。利用二维水质 模型对研究区域下边界出口浓度值进行模拟,将所 得值与实际测得的浓度值进行对比,见图6~7。



图 6 湿地出口 NH<sub>3</sub>-N 模拟结果和实测值对比值 Fig. 6 Comparison of NH<sub>3</sub>-N in wetland outlet



图 7 湿地出口 TP 模拟结果和实测值对比值 Fig. 7 Comparison of TP in wetland outlet

由图 6~7 可以看出,6 月份 NH<sub>3</sub>-N 和 TP 的 相对浓度明显高于5 月份,表明6 月份用水相对集 中,污染物浓度排放相对较高,进入湿地的污染物 多。对比模拟值与实测值发现:NH<sub>3</sub>-N 模拟的相对 误差范围为4.5%~11.7%,TP 模拟的相对误差范 围为5.1%~14.1%,其相对误差符合水质模型精 度要求,模拟效果较为理想。误差原因可能是污染 物受水流紊动影响的同时,受到各种环境因素影响 较大导致。通过二维水质模型模拟验证,得到水质 参数取值结果见表1。

表1 水质参数取值

Tab. 1 Values of water quality parameters

| 数值      | 单位                                                                | 范围                                                                                                                       |
|---------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 0.05    | d                                                                 | $0 \sim 10$                                                                                                              |
| 0.066   | g N/g DO                                                          | 0~0.2                                                                                                                    |
| 0.109   | g N/g DO                                                          | $0 \sim 1$                                                                                                               |
| 0.05    | mg $N/L$                                                          | $0 \sim 5$                                                                                                               |
| 0.009 1 | g P/g DO                                                          | 0~0.1                                                                                                                    |
| 0.015   | g P/g DO                                                          | $0 \sim 0.1$                                                                                                             |
| 0.005   | mg P/L                                                            | $0 \sim 2$                                                                                                               |
|         | 数值<br>0.05<br>0.066<br>0.109<br>0.05<br>0.009 1<br>0.015<br>0.005 | 数値 単位<br>0.05 d<br>0.066 g N/g DO<br>0.109 g N/g DO<br>0.05 mg N/L<br>0.009 1 g P/g DO<br>0.015 g P/g DO<br>0.005 mg P/L |

由率定结果可知,氨氮浓度与硝化速率、植物及 细菌呼吸速率均有关,植物、细菌呼吸速率与底泥耗 氧量均通过溶解氧影响氨氮浓度大小,率定过程中 得出硝化作用的衰减作用>植物的呼吸作用>底泥 耗氧量;总磷浓度与磷的释放速率、植物及细菌呼吸 速率、底泥耗氧量有关。分析发现氮、磷污染物对植 物、细菌的呼吸速率及底泥耗氧量均较为敏感。

# 2 结果与讨论

### 2.1 流场分布

选取湿地 2016 年 5 月的流场进行分析,具体流 场分布实际情况见图 8。



因缺少实际流速监测资料仅进行定性分析,由 图 8 可知湿地单元水流缓慢,出口流速基本维持在 0.040 m/s左右。出口流速略高于入口,主要是由 于取水扰动了水流使得出口流速增大。图 8 中湿地 四角流速明显低于湿地入口和主流区流速,且存在 一块区域流速偏低,这是由湿地的高程不一致和水 生植物存在导致,水体流速偏缓的区域,会影响污染 物降解效果。

#### 2.2 水质模拟分析

根据湿地实际资料设定正常水位下氮磷的背景 值为 0,污染物流入浓度选取污染较严重的 5 月份 浓度值,模拟时长为 10 h,通过模拟分别得到计算 时长下氮、磷的降解情况。 由图 9 可以看出: NH<sub>3</sub>-N 初始浓度为 41.1 mg/L,进入湿地后随水流方向向出口推移;影响带在 3 h 到达出口,此时 NH<sub>3</sub>-N 的浓度为 23.3 mg/L, 降解率为 43.3%;进入湿地 7 h 后,污染物降解速 率变缓; NH<sub>3</sub>-N 进入 10 h, 污染物浓度趋于稳定, NH<sub>3</sub>-N 出口的浓度为 24.2 mg/L。

由图 10 可以看出:TP 初始浓度为 3.91 mg/L, 污染物进入湿地后随水流向出口推移。TP 的影响 带在 3 h 到达出口,此时 TP 的浓度为 2.7 mg/L,降 解率为 30.9%。TP 进入湿地 7 h 后,污染物降解 速率变缓;TP 进入 10 h,污染物的浓度趋于稳定, 湿地出口的浓度约为 2.74 mg/L。



图 9 NH<sub>3</sub>-N 浓度分布图 Fig. 9 NH<sub>3</sub>-N concentration distribution map



图 10 TP 浓度分布图 Fig. 10 TP concentration distribution map

由氮磷进入湿地后的迁移变化可知,NH<sub>3</sub>-N和 TP进入湿地其主流影响带不断地向出口推移,浓 度逐渐降低。湿地中由于湿地植物的存在,水流易 形成涡流<sup>[10]</sup>,导致某些区域污染物浓度呈圈状分布。 污染物进入湿地3h时,出入口污染物浓度变化较 快,7h时污染物浓度变化逐渐趋于平缓;10h污染物 浓度变化趋于稳定,且区域整体浓度值明显降低。表 明一定水力停留时间内,湿地对污染物的降解效果明 显,可作为水质改善措施。由计算可知,NH<sub>3</sub>-N的降 解率为43.3%,TP的降解率为30.9%。

总的来说氮磷污染物变化规律基本一致,湿地 对氮的降解效果好于磷是由于湿地植物芦苇在相同 的水力停留时间内对磷的去除能力有限所致。研究 发现湿地植物对水中氮磷污染物的去除起到了很好 的促进作用,根据水质参数取值可知氮在人工湿地 中的去除主要影响因素有植物吸收、硝化反硝化等, 其中植物吸收的去除可达氮总去除量的三分之一左 右;若同时能提供充足的溶解氧,则可保障湿地系统 脱氮途径的顺利进行。另一方面,在湿地植物生长 季节,人工湿地中的植物、基质之间处于平衡状态, 可使基质与水间的交换吸附磷的能力不断恢复,因 此有植物湿地系统比无植物湿地系统的磷去除效果 更高<sup>[11]</sup>。相关研究发现磷的去除效果与湿地系统 中植物的收获频率有很大关系,在一定的收获频率 下,植物吸收的去除可达磷总去除率的 20% ~ 30%<sup>[12]</sup>。因此合理确定湿地植物的选择、种植及收 获频率,更能达到湿地水质高效净化的目的。

## 3 结 论

湿地生态动力学模型研究有助于掌握湿地中污

染物的迁移规律及降解情况,通过研究得到以下 结论:

 1)基于现有湿地,模拟得到的模型精度较高, 表明该模型可以模拟预测湿地中污染物的迁移降解 情况,为人工湿地的数值模拟方法手段提供参考;

2)湿地植物对氮磷污染物的去除能力不容忽视,植物根系对污染物的吸收作用成为湿地水质净 化高效能的主要驱动,因此对湿地植物的选择、种植 及收获频率需确定合理;

3)模拟结果表明氨氮和总磷在湿地的迁移降 解情况基本一致,人工湿地对氨氮及总磷的降解率 分别达到 43.3%和 30.9%。

#### 参考文献:

- [1] FAULWETTER J L, BURR M D, PARKER A E, et al. Influence of season and plant species on the abundance and diversity of sulfate reducing bacteria and ammonia oxidizing bacteria in constructed wetland microcosms [J]. Microbial Ecology, 2013, 65(1): 111-127.
- [2]张航,冯民权,王莉,等.基于生态调水清潩河水环境效应研究[J].西安理工大学学报,2015,31(1):83-90.

ZHANG Hang, FENG Minquan, WANG Li, et al. Research on water environmental effects of Qingyi River based on ecological water diversion [J]. Journal of Xi'an University of Technology, 2015, 31(1): 83-90.

- [3] HIPSEY M R, ROMERO J R, ANTENUCCI J P. Computational aquatic ecosystem dynamics model science manual [M]. Centre for Water Research, University of Western Australia, January 16, 2006.
- [4] VYMAZAL J. Plants used in constructed wetlands with horizontal subsurface flow: a review [J]. Hydrobiologia, 2011, 674(1): 133-156.
- [5] 李亚静,朱文玲,黄柱坚,等.垂直流人工湿地脱氮过 程的生态动力学模拟与分析 [J]. 农业环境科学学报, 2015,34(4):776-780.

LI Yajing, ZHU Wenling, HUANG Zhujian, et al. Modeling analysis of denitrification dynamics in a vertical flow constructed wetland [J]. Journal of Agricultural Environmental Science, 2015, 34(4); 776-780.

[6] 唐美珍,姚淑敏,张凤凤,等. Pseudomonas flava WD-

3 对人工湿地污染物的去除及 Monod 模型模拟 [J]. 环 境科学学报, 2014, 34(12): 3050-3056.

TANG Meizhen, YAO Shumin, ZHANG Fengfeng, et al. Pollutants removal by Pseudomonas flava WD-3 and Monod model simulation in constructed wetland [J]. Acta Scientiae Circumstantiae, 2014, 34 (12): 3050 -3056.

- [7] 王子珏,王欣泽,林燕,等. 处理低污染河水的湿地内 氮迁移转化过程模拟 [J]. 环境科学研究, 2014, 27 (6): 602-607.
  WANG Zijue, WANG Xinze, LIN Yan, et al. Simulation of nitrogen transfer processes in a constructed wetland for a lightly contaminated [J]. Research of Environmental Science, 2014, 27(6): 602-607.
- [8] 付国楷, 王敏, 张智, 等.人工湿地用于污水深度处理的反应动力学 [J]. 土木建筑与环境工程, 2012, 34 (4):111-117.
  FU Guokai, WANG Min, ZHANG Zhi, et al. Reaction kinetics of three types of constructed wetland for advanced domestic wastewater treatment [J]. Journal of Civil, Architectural and Environmental Engineering, 2012, 34(4): 111-117.
- [9] 徐德福,李映雪.用于污水处理的人工湿地的基质、植物及其配置[J].湿地科学,2007,5(1):32-38.
  XU Defu, LI Yingxue. Screen plants and substrates of the constructed wetland for treatment of wastewater [J]. Wetland Science, 2007, 5(1): 32-38.
- [10] 顾峰峰. 芦苇阻力系数物模及湿地水流数模研究
  [D]. 大连:大连理工大学,2006.
  GU Fengfeng. Study on resistance coefficient of reeds and numerical simulation of flow in wetland [D].
  Dalian; Dalian University of Technology, 2006.
- [11] GREENWAY M. Nutrient content of wetland plants in constructed wetlands receiving municipal effluent in tropical Australia [J]. Water Science and Technology, 1997, 35(5): 135-142.
- [12] REED S C, CRITES R W, MIDDLEBROOKS E J. Natural systems for waste management and treatment [M]. New York: McGraw Hill Inc., 1995.

(责任编辑 王绪迪)