DOI:10.19322/j. cnki. issn. 1006-4710. 2020. 03. 022

# 一种用于同塔双回线故障定位的新相模变换法

王守鹏<sup>1,2</sup>,赵冬梅<sup>2</sup>,袁敬中<sup>1</sup>,高杨<sup>1</sup>

(1. 国网冀北电力有限公司经济技术研究院,北京 100038; 2.华北电力大学 电气与电子工程学院,北京 102206)

摘要:本文结合均匀换位的输电线路性质,根据三相系统和六相系统之间的关系,构造出一种适用 于同塔双回线的新相模变换矩阵。该矩阵用于相模变换,可用单一模量反映各种短路故障,并且矩 阵的运算因子均为实数,可使计算量大大减少。用此相模变换矩阵将双回线解耦,可在某一模量下 完成同塔双回线发生各种短路故障时的故障定位。大量仿真结果表明,所提方法可行、有效。 关键词:相模变换; 六相系统; 同塔双回线; 故障定位 中图分类号: TM773 文献标志码: A 文章编号: 1006-4710(2020)03-0432-07

# New phase-mode transformation matrix for fault location of double-circuit transmission lines

WANG Shoupeng<sup>1,2</sup>, ZHAO Dongmei<sup>2</sup>, YUAN Jingzhong<sup>1</sup>, GAO Yang<sup>1</sup>

(1. State Grid Jibei Electric Economic Research Institute, Beijing 100038, China; 2. School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China)

**Abstract**: On the basis of the relationship between three-phase system and six-phase system, this study considers the property of uniformly transposed lines to present a new phase-mode transformation matrix for double-circuit lines. The transformation matrix can use a single modulus to reflect various fault types, with its operational factors being real numbers, thus greatly reducing the amount of calculation. Using this transformation matrix to decouple double-circuit lines, fault location can be confirmed under various types of short-circuit faults by using a certain modulus. A large number of simulation results show that the proposed method is feasible and effective.

Key words: phase-mode transformation; six-phase system; double-circuit transmission lines; fault location

同塔双回输电线路<sup>[1-2]</sup>架设于同一铁塔,线间距 离紧凑,具有占地少、输送能力强、投资效益高等优 点<sup>[3]</sup>,因此,近年来同塔双回输电线路在工程领域得 以广泛应用,其故障定位方法亦受到广大学者的关 注,并已经取得了大量的科研成果<sup>[4-11]</sup>。其中,单端 故障定位法<sup>[4-5]</sup>仅使用一端的电气量,采集数据量 小,但结果受过渡电阻、系统阻抗的影响严重;双端 故障定位法<sup>[6-11]</sup>因引入双端的电气量,从原理上消 除了过渡电阻、系统阻抗对结果的影响,并且随着电 力通信技术的发展,应用前景良好。从解耦方法来 看,目前解耦计算中比较经典的相模变换有对称分 量、Clarke、Karenbauer等变换<sup>[6]</sup>。其中,对称分量 变换可用正序分量反映各种故障类型,但其矩阵因

子含有复数,使得故障分析中的计算量大大增加; Clarke变换、Karenbauer变换的矩阵因子均为实数,实数运算具有计算简单、计算量小的优点,但 Clarke变换、Karenbauer变换无法用单一模量反映 各种故障类型,在故障定位时要与选相配合或采用 双模量分析<sup>[7]</sup>。

本文从三相输电系统出发,推导新的相模变换 矩阵。结合均匀换位的输电线路的相模变换矩阵的 数学性质,根据三相系统和六相系统之间的关系,推 导出了一种新的双回线相模变换矩阵。该变换矩阵 的运算因子全为实数,用于相模变换时可用单一模 量反映各种短路故障。用此变换矩阵将同塔双回线 解耦,可在某一模量下实现同塔双回线发生各种短

**收稿日期**: 2019-04-09; 网络出版日期: 2020-04-21

网络出版地址: http://kns. cnki. net/kcms/detail/61. 1294. N. 20200421. 1226. 004. html

基金项目:国家自然科学基金面上项目(51377054);中央高校基本科研业务费专项资金资助项目(2017XS019)

第一作者:王守鹏,男,博士,工程师,研究方向为电力系统保护与控制、电网故障诊断、人工智能在电力系统中的应用。

路故障时的故障定位。大量 ATP-EMTP 仿真结果 表明,故障定位结果不受故障类型、过渡电阻和数据 不同步的影响,具有较高精度。

#### 相模变换 1

### 1.1 三相系统相模变换矩阵

图1为三相系统图。其中 I<sub>4</sub>、I<sub>B</sub>、I<sub>C</sub>分别表 示 A、B、C 三相电流相量,  $Z_{\rm M}$ 、 $Z_{\rm s}$ 分别为互阻抗、 自阻抗,m、n分别为系统的始、末端。



图 1 三相系统图 Fig. 1 Schematic of three-phase system

对于图1所示的三相系统,在线路均匀换位情 况下,线路参数对称,目参数矩阵为平衡矩阵,则有:

$$\begin{pmatrix} \dot{U}_{mnA} \\ \dot{U}_{mnB} \\ \dot{U}_{mnC} \end{pmatrix} = \begin{pmatrix} Z_{S} & Z_{M} & Z_{M} \\ Z_{M} & Z_{S} & Z_{M} \\ Z_{M} & Z_{M} & Z_{S} \end{pmatrix} \begin{pmatrix} \dot{I}_{mnA} \\ \dot{I}_{mnB} \\ \dot{I}_{mnC} \end{pmatrix}$$
(1)

其中平衡参数矩阵为:

$$\mathbf{Z} = \begin{pmatrix} Z_{\mathrm{S}} & Z_{\mathrm{M}} & Z_{\mathrm{M}} \\ Z_{\mathrm{M}} & Z_{\mathrm{S}} & Z_{\mathrm{M}} \\ Z_{\mathrm{M}} & Z_{\mathrm{M}} & Z_{\mathrm{S}} \end{pmatrix}$$

式中: $U_{mnA}$ 、 $U_{mnB}$ 、 $U_{mnC}$ 分别为始末端A、B、C 三相 电压相量差;  $I_{mnA}$ 、 $I_{mnB}$ 、 $I_{mnC}$ 分别为流过始末端的 A、B、C 三相电流相量。由Z 可知,线路间存在耦 合,在故障分析时需要进行解耦计算。

解耦计算就是使 Z 对角化,求解特征方程 det( $\mathbf{Z} - \lambda_i \mathbf{I}$ ) = 0,可得:

$$\begin{cases} \lambda_1 = Z_{\rm S} + 2Z_{\rm M} \\ \lambda_2 = \lambda_3 = Z_{\rm S} - Z_{\rm M} \end{cases}$$
(2)

则对应于特征值 $\lambda$ 的特征向量为 $T_{i}$ =  $(t_{1i}, t_{2i}, t_{3i})^{\mathrm{T}}$ , i = 1, 2, 3。令矩阵  $\mathbf{T} = (T_1, T_2, T_3)$ , 则有可逆矩阵  $T^{-1}$ 、对角阵  $\Lambda$ ,使  $T^{-1}ZT = \Lambda$ ,其中  $\boldsymbol{\Lambda} = \operatorname{diag}(\lambda_1, \lambda_2, \lambda_3)$ .

由特征值和特征向量的数学性质,有:

$$(\mathbf{Z} - \boldsymbol{\lambda}_i \mathbf{I}) \mathbf{T}_i = 0 \tag{3}$$

把式
$$(2)$$
中的 $\lambda_1$ 代入式 $(3)$ ,可求得:

$$t_{11} = t_{21} = t_{31} \tag{4}$$

同理,把式(2)中的
$$\lambda_2$$
、 $\lambda_3$ 代人式(3),可求得:  
 $t_{12} + t_{22} + t_{32} = 0$  (5)

短路故障

A-G

C-G

 $\dot{I}_{A} = \dot{I}_{C} = 0$ B-G  $2I_{\rm B}$  $-3I_{\rm B}$  $I_{\rm D}$  $\dot{I}_{
m B}$  $\dot{I}_{\rm C} = 0, \, \dot{I}_{\rm A} = - \dot{I}_{\rm B}$ AB -4  $I_{\rm B}$ 0 CA  $\dot{I}_{\rm B} = 0, \, \dot{I}_{\rm C} = -\dot{I}_{\rm A} \qquad 4 \, \dot{I}_{\rm A}$ - İ A 0  $\dot{I}_{\rm A} = 0, \ \dot{I}_{\rm B} = -\dot{I}_{\rm C}$  5  $\dot{I}_{\rm B}$ BC  $-5\dot{I}_{\rm B}$ 0 ABC  $\dot{I}_{A} + \dot{I}_{B} + \dot{I}_{C} = 0$   $\dot{I}_{B} - 4\dot{I}_{C} - 4\dot{I}_{B} + \dot{I}_{C}$ AB-G  $\dot{I}_{\rm C} = 0$   $\dot{I}_{\rm A} + 2\dot{I}_{\rm B}$   $\dot{I}_{\rm A} - 3\dot{I}_{\rm B}$   $\dot{I}_{\rm A} + \dot{I}_{\rm B}$  $I_A - 3 I_C$   $I_A + 2 I_C$   $I_A + I_C$ CA-G  $I_{\rm B} = 0$  $\dot{I}_{A} = 0$   $2\dot{I}_{B} - 3\dot{I}_{C} - 3\dot{I}_{B} + 2\dot{I}_{C}\dot{I}_{B} + \dot{I}_{C}$ BC-G

由表1可知,通过变换矩阵T解耦而得的1模

$$t_{13} + t_{23} + t_{33} = 0 \tag{6}$$

对于任意三阶矩阵,如果满足式(4)~式(6),则 均可作为三相系统的相模变换矩阵。验证易知,对 称分量变换、Clark 变换、Karenbauer 变换的矩阵均 满足式(4)~式(6)。

基于上述分析,对于图1所示三相系统,根据式 (4)~式(6)可构造用于三相系统的相模变换矩阵:

$$\mathbf{T} = \frac{1}{15} \begin{pmatrix} 5 & 5 & 5\\ 5 & -1 & -4\\ 5 & -4 & -1 \end{pmatrix}$$
(7)

其逆矩阵为:

$$\boldsymbol{T}^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 1 & -3 & 2 \end{pmatrix}$$
(8)

利用矩阵 T 可将存在互感的三相系统解耦,得 到 3 个相互独立的 0、1、2 模分量。用 T 将三相系统 中的电流相量变换为模量的形式.

$$(\dot{I}_0, \dot{I}_1, \dot{I}_2)^{\mathrm{T}} = \mathbf{T}^{-1} (\dot{I}_{\mathrm{A}}, \dot{I}_{\mathrm{B}}, \dot{I}_{\mathrm{C}})^{\mathrm{T}}$$
 (9)  
将式(8)代人式(9),展开可得:

$$\begin{pmatrix} \dot{I}_{0} \\ \dot{I}_{1} \\ \dot{I}_{2} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} \dot{I}_{A} \\ \dot{I}_{B} \\ \dot{I}_{C} \end{pmatrix} = \begin{pmatrix} \dot{I}_{A} + \dot{I}_{B} + \dot{I}_{C} \\ \dot{I}_{A} + 2\dot{I}_{B} - 3\dot{I}_{C} \\ \dot{I}_{A} - 3\dot{I}_{B} + 2\dot{I}_{C} \end{pmatrix}$$
(10)

式中: I<sub>0</sub>、I<sub>1</sub>、I<sub>2</sub>分别表示 0、1、2 电流模分量。

表1给出了各种短路故障下用变换矩阵 T 做解 耦计算取得的电流模分量值。

表1 各种短路故障下的电流模分量

Tab. 1 Current modulus components under all kinds of fault types

1 模量

 $-3 I_{\rm C}$ 

2 模量

. I A

 $2 I_{\rm C}$ 

0模量

. I<sub>A</sub>

Ic

相边界条件

 $\dot{I}_{A} = \dot{I}_{B} = 0$ 

 $\dot{I}_{\rm B} = \dot{I}_{\rm C} = 0$   $\dot{I}_{\rm A}$ 

量和 2 模量始终存在,因此可以利用解耦后的 1 模 量或 2 模量进行故障分析,从而完成各种短路故障 情况下的故障定位。

### 1.2 六相系统相模变换矩阵

与三相系统相比,六相系统存在相间和线间耦 合。图 2 为完全换位情况下的双回线六相系统。图 中, $\dot{I}_{IA}$ 、 $\dot{I}_{IB}$ 、 $\dot{I}_{IC}$  和  $\dot{I}_{IIA}$ 、 $\dot{I}_{IIB}$ 、 $\dot{I}_{IC}$  分别表示 I、II 回线的 A、B、C 三相电流相量; $Z_s$  为各回线自阻抗;  $Z_M$  为 I、II 回线的相间互阻抗; $Z'_M$  为 I、II 回线的 线间互阻抗;m、n 分别为系统的始、末端。图 2 所示 六相系统的电压、电流关系为:



图 2 六相系统图 Fig. 2 Schematic of six-phase system

式中: $\dot{U}_{mnIA}$ 、 $\dot{U}_{mnIB}$ 、 $\dot{U}_{mnIC}$ 和 $\dot{U}_{mnIIA}$ 、 $\dot{U}_{mnIB}$ 、 $\dot{U}_{mnIIC}$ 分别为 I、II回线的始末端 A、B、C 三相电压相量 差; $I_{mnIA}$ 、 $I_{mnIB}$ 、 $I_{mnIC}$ 和 $I_{mnIIA}$ 、 $I_{mnIIB}$ 、 $I_{mnIIC}$ 分别为 I、II回线流过始末端的 A、B、C 三相电流相量。

结合文献[3]、[8]采用的六序分量法线间解耦 矩阵 **P**将式(11)的电压、电流相量分解为同、反向 量,以及将 I、II回线之间解耦,得:

$$\dot{\boldsymbol{U}}_{\mathrm{TF}} = \boldsymbol{P}^{-1} \boldsymbol{Z} \boldsymbol{P} \, \boldsymbol{I}_{\mathrm{TF}}$$
(12)

$$\boldsymbol{Z}_{\mathrm{TF}} = \boldsymbol{S}^{-1}\boldsymbol{Z}\boldsymbol{S} = \begin{bmatrix} Z_{\mathrm{S}} + 2Z_{\mathrm{M}} + 3Z_{\mathrm{M}}^{'} \\ Z_{\mathrm{S}} - Z_{\mathrm{M}} \\ Z_{\mathrm{S}} - Z_{\mathrm{M}} \end{bmatrix}$$

式中:

$$\boldsymbol{P} = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 \end{pmatrix};$$

 $\dot{U}_{TF} = (\dot{U}_T, \dot{U}_F)^T, \dot{I}_{TF} = (\dot{I}_T, \dot{I}_F)^T,$ 下标 T、F 分别 表示同、反向网;  $\dot{U}_T$ 、 $\dot{U}_F$ 和  $\dot{I}_T$ 、 $\dot{I}_F$ 分别表示同、反 向网电压和电流相量。

将式(12)表示为同向量和反向量的形式,即:

$$\begin{pmatrix} \dot{\boldsymbol{U}}_{\mathrm{T}} \\ \dot{\boldsymbol{U}}_{\mathrm{F}} \end{pmatrix} = \begin{pmatrix} \boldsymbol{Z}_{\mathrm{T}} & \\ & \boldsymbol{Z}_{\mathrm{F}} \end{pmatrix} \begin{pmatrix} \dot{\boldsymbol{I}}_{\mathrm{T}} \\ \dot{\boldsymbol{I}}_{\mathrm{F}} \end{pmatrix}$$
(13)

式中:

$$\mathbf{Z}_{\rm T} = \begin{pmatrix} Z_{\rm S} + Z'_{\rm M} & Z_{\rm M} + Z'_{\rm M} & Z_{\rm M} + Z'_{\rm M} \\ Z_{\rm M} + Z'_{\rm M} & Z_{\rm S} + Z'_{\rm M} & Z_{\rm M} + Z'_{\rm M} \\ Z_{\rm M} + Z'_{\rm M} & Z_{\rm M} + Z'_{\rm M} & Z_{\rm S} + Z'_{\rm M} \end{pmatrix};$$
  
$$\mathbf{Z}_{\rm F} = \begin{pmatrix} Z_{\rm S} - Z'_{\rm M} & Z_{\rm M} - Z'_{\rm M} & Z_{\rm M} - Z'_{\rm M} \\ Z_{\rm M} - Z'_{\rm M} & Z_{\rm S} - Z'_{\rm M} & Z_{\rm M} - Z'_{\rm M} \\ Z_{\rm M} - Z'_{\rm M} & Z_{\rm M} - Z'_{\rm M} & Z_{\rm S} - Z'_{\rm M} \end{pmatrix}.$$

 $Z_{T}$ 、 $Z_{F}$ 存在耦合阻抗,需要进行解耦计算。由 1.1节可知, $Z_{T}$ 、 $Z_{F}$ 可由矩阵T解耦,从而可将同 向量和反向量分别变换成同向网和反向网的 0、1、2 模量。结合同、反向量的变换矩阵P和三相系统的 相模变换矩阵T可得六相系统的相模变换矩阵S =

由此得到解耦后的模量与相量之间的关系:

$$\boldsymbol{U}'_{\mathrm{TF}} = \boldsymbol{Z}_{\mathrm{TF}} \boldsymbol{I}'_{\mathrm{TF}}$$
 (14)

式中:

$$Z_{\rm S} - Z_{\rm M}$$
  
 $Z_{\rm S} + 2Z_{\rm M} + 3Z_{\rm M}$   
 $Z_{\rm S} - Z_{\rm M}$   
 $Z_{\rm C} - Z_{\rm M}$ 

$$\dot{\boldsymbol{U}}'_{\mathrm{TF}} = \begin{bmatrix} \dot{\boldsymbol{U}}_{\mathrm{T0}} \\ \dot{\boldsymbol{U}}_{\mathrm{T1}} \\ \dot{\boldsymbol{U}}_{\mathrm{T2}} \\ \dot{\boldsymbol{U}}_{\mathrm{F0}} \\ \dot{\boldsymbol{U}}_{\mathrm{F1}} \\ \dot{\boldsymbol{U}}_{\mathrm{F2}} \end{bmatrix} = \boldsymbol{S}^{-1} \begin{bmatrix} \dot{\boldsymbol{U}}_{\mathrm{mnIA}} \\ \dot{\boldsymbol{U}}_{\mathrm{mnIB}} \\ \dot{\boldsymbol{U}}_{\mathrm{mnIC}} \\ \dot{\boldsymbol{U}}_{\mathrm{mnIIA}} \\ \dot{\boldsymbol{U}}_{\mathrm{mnIIA}} \\ \dot{\boldsymbol{U}}_{\mathrm{mnIIA}} \end{bmatrix} ;$$

$$\dot{\boldsymbol{I}}'_{\mathrm{TF}} = \begin{bmatrix} \dot{\boldsymbol{I}}_{\mathrm{T0}} \\ \dot{\boldsymbol{I}}_{\mathrm{T1}} \\ \dot{\boldsymbol{I}}_{\mathrm{T2}} \\ \dot{\boldsymbol{I}}_{\mathrm{F0}} \\ \dot{\boldsymbol{I}}_{\mathrm{F1}} \\ \dot{\boldsymbol{I}}_{\mathrm{F2}} \end{bmatrix} = \boldsymbol{S}^{-1} \begin{bmatrix} \dot{\boldsymbol{I}}_{\mathrm{mnIA}} \\ \dot{\boldsymbol{I}}_{\mathrm{mnIIA}} \\ \dot{\boldsymbol{I}}_{\mathrm{mnIIA}} \\ \dot{\boldsymbol{I}}_{\mathrm{mnIIA}} \\ \dot{\boldsymbol{I}}_{\mathrm{mnIIA}} \\ \dot{\boldsymbol{I}}_{\mathrm{mnIIA}} \\ \dot{\boldsymbol{I}}_{\mathrm{mnIIA}} \end{bmatrix} ;$$

 $\dot{U}_{T0}$ 、 $\dot{U}_{T1}$ 、 $\dot{U}_{T2}$ 和 $\dot{U}_{F0}$ 、 $\dot{U}_{F1}$ 、 $\dot{U}_{F2}$ 分别表示同、反向 网 0、1、2 电压模分量; $I_{T0}$ 、 $I_{T1}$ 、 $I_{T2}$ 和 $I_{F0}$ 、 $I_{F1}$ 、 $\dot{I}_{F2}$ 分别表示同、反向网 0、1、2 电流模分量。

由式(14)可知,存在互感的双回线通过变换矩 阵 S 变换为 6 个相互独立的模量,而且矩阵 S 的运 算因子均为实数,实数不但可简化运算,而且能够大 大减少运算量。线间解耦矩阵 P 的引入,既保留了I、 II回线间的关联性,又具有类似六序分量法变换矩阵的 性质,如应用同向网 1 模量,故障定位可以不受短路故 障类型的束缚;结合变换矩阵 T 的性质,相模变换矩阵 S 解耦后的同向网 1 模量和 2 模量在发生各种类型短 路故障情况下均存在,从而可以应用同向网 1 模量或 2 模量实现各种短路故障下的故障定位。

# 2 同塔双回线的双端故障测距原理

通过上述对六相系统的相模变换矩阵的分析, 可使用相模变换矩阵 S 来对同塔双回线进行解耦, 并应用某一模分量来完成故障定位。首先以单相系 统为例推导故障定位算法,输电线路采用分布参数 线路模型,线路的故障示意图如图 3 所示。



图 3 线路故障示意图 Fig. 3 Schematic diagram of line fault 图 3 中,  $\dot{U}_{M}$ 、 $\dot{I}_{N}$ 和 $\dot{U}_{N}$ 、 $\dot{I}_{N}$ 分别为故障发生后 在 M 侧和 N 侧所测得的电压、电流相量;线路总长 为 L;G 为故障点, 且到 M 侧的距离为 $x; \dot{U}_{G}$  为故障 点电压相量;  $\dot{I}_{MG}$ 和 $\dot{I}_{NG}$ 分别为 M 侧和 N 侧注入故 障点的电流相量。依据文献[9]~[11], 在故障点 G 处, 利用 M 侧和 N 侧的电压、电流推算求得的电 压幅值分布存在相等关系, 从而可构建故障定位函数:

$$F(x) = |\dot{U}_{Mi} \cosh \gamma_{i} x - Z_{ci} \dot{I}_{Mi} \sinh \gamma_{i} x | -$$
  
$$|\dot{U}_{Ni} \cosh \gamma_{i} (L - x) - Z_{ci} \dot{I}_{Ni} \sinh \gamma_{i} (L - x) |$$
  
(15)

式中:下标*i*代表模分量序号; $\dot{U}_{Mi}$ 、 $\dot{I}_{Mi}$ 和 $\dot{U}_{Ni}$ 、 $\dot{I}_{Ni}$ 分别为M 侧和N 侧的电压、电流相量; $Z_{ci}$ 为特性 阻抗, $Z_{ci} = \sqrt{Z_i/Y_i}$ ; $\gamma_i$ 为传播常数, $\gamma_i = \sqrt{Z_iY_i}$ ;  $Z_i$ 为线路的阻抗参数; $Y_i$ 为线路的导纳参数。

对于式(15),令F(x) = 0,可得故障定位方程。

根据叠加原理,故障定位亦可采用线路两侧电 压、电流故障分量进行分析,从而消除故障定位使用 工频电气量时所受负荷电流的影响<sup>[12-13]</sup>。则式 (15)可改写为相应故障分量表示的形式:

$$F(x) = |\Delta U_{Mi} \cosh \gamma_{i} x - Z_{ci} \Delta I_{Mi} \sinh \gamma_{i} x | -$$
  
$$|\Delta U_{Ni} \cosh \gamma_{i} (L - x) - Z_{ci} \Delta I_{Ni} \sinh \gamma_{i} (L - x) |$$
  
(16)

式中:  $\Delta U_{Mi}$ 、 $\Delta I_{Mi}$ 和  $\Delta U_{Ni}$ 、 $\Delta I_{Ni}$ 分别为  $U_{Mi}$ 、 $I_{Mi}$ 和  $U_{Ni}$ 、 $I_{Ni}$ 的故障分量。

对式(16)求解,具体方法采用迭代搜索法<sup>[14]</sup>, 选取步长  $\Delta x$ ,分别从线路双端推导沿线电压幅值 分布曲线,两条曲线交点的位置则为故障点的位置。 需要说明的是, $\Delta x$ 取值越小,故障定位精度越高, 但同时计算量也越大,计算时间亦越长。对于故障 定位而言,并不要求有很高的实时性,因此有足够的 时间来进行运算,实际计算中步长可根据工程需要 进行选择。

式(16)所示的故障定位方程计算的是模值差, 是根据在故障点处模值差为零而求得故障距离。对 于同塔双回线系统,可应用某一模分量来实现故障 定位。应用前文介绍的六相系统相模变换矩阵 *S* 进 行解耦计算,采用同向网 1 模量或 2 模量,故障定位 可以不受故障类型的束缚。需要说明的是,所采用 的同向网 1 模量或 2 模量,在不同故障条件下线路 双端测量点处模值会有所差别,但对于式(16)而言, 故障点处模值差始终为零。考虑工程实际应用于故 障定位的模分量在不同故障条件下的模值差别不是 双端故障定位计算的影响因素,因此本文仅应用同 向网1模量或2模量进行计算亦不会影响到工程实 际应用。

# 3 算例仿真分析

采用 ATP-EMTP 搭建同塔双回线模型进行仿 真分析,如图 4 所示。系统及线路参数设置为:



图 4 同塔双回线仿真模型 Fig. 4 Simulation model for double-circuit lines

线路长度:L = 250 km;

M侧系统:电源电压  $E_m = 220 \angle 0^\circ \text{kV}$ ,电源正序 阻抗  $Z_{m1} = j28.3 \Omega$ ,电源零序阻抗  $Z_{m0} = j26.3 \Omega$ ;

N 侧系统:电源电压  $E_n = 220 \angle 30^\circ \text{kV}$ ,电源正序 阻抗  $Z_{n1} = j13.1 \Omega$ ,电源零序阻抗  $Z_{n0} = j29.4 \Omega$ ;

单位正序阻抗:  $Z_1 = 0.0387 + j0.3098\Omega/km$ ; 单位零序阻抗:  $Z_0 = 0.1865 + j0.7316\Omega/km$ ; 单位正序导纳:  $j\omega C_1 = j3.7640 uS/km$ ; 单位零序导纳:  $j\omega C_0 = j2.0375 uS/km$ ; 单位零序互阻抗:  $Z_{M0} = 0.1478 + j0.4218\Omega/km$ ; 单位零序互导纳:  $j\omega C_{M0} = j0.5429 uS/km$ 。

本文为获取较高的精度, Δx 取值与定位精度 一致,为 0.1 m。故障定位采用双端电压、电流的故 障分量。解耦计算采用所提的相模变换阵 S,并应 用求得的同向网 1 模量进行故障定位。以 100 kHz 采样频率对故障后的第二周波进行采样,并采用全 周傅氏算法进行滤波。

首先对本文所提相模变换矩阵的有效性进行仿 真验证。表 2 列出了同塔双回线在几种比较典型的 短路故障下,与六序分量变换矩阵的对比结果,其中 相间和接地的过渡电阻均设为 50 Ω,故障距离设为 50 km。可见,本文所提的相模变换法能够在单模 量下完成测距,并满足故障定位的要求。

表 3 列出了同塔双回线在故障距离为 50 km、 90 km、160 km 和 230 km 时,发生几种比较典型的 短路故障情况下的故障定位结果,其中相间和接地 的过渡电阻均设为 50 Ω。由表 3 可知,同塔双回线 在发生不同短路故障情况下,该算法均可以满足故 障定位要求,并可避免短路故障类型的影响。

表 2 故障定位比较结果

Tab. 2 Comparison results of fault location

| 短路           | 故障定位/km  |          |  |
|--------------|----------|----------|--|
| 故障           | 六序分量变换   | 本文所提方法   |  |
| I A-G        | 49.957 1 | 49.957 4 |  |
| I AB         | 49.953 9 | 49.953 9 |  |
| I AB-G       | 49.951 8 | 49.613 6 |  |
| I ABC        | 49.778 9 | 49.598 1 |  |
| IB∥C-G       | 49.780 2 | 49.650 2 |  |
| IB∥C         | 49.648 9 | 49.648 9 |  |
| I A II BC-G  | 49.778 9 | 49.598 1 |  |
| I A II BC    | 49.778 9 | 49.598 1 |  |
| I AB∐ BC-G   | 49.936 3 | 49.601 8 |  |
| I AB∐ BC     | 50.050 9 | 50.050 8 |  |
| I A II ABC-G | 49.950 6 | 49.498 8 |  |
| I A II ABC   | 49.945 3 | 49.945 3 |  |

表 3 不同短路故障情况下故障定位结果

| 短路           | 故障定位/km   |           |          |          |  |
|--------------|-----------|-----------|----------|----------|--|
| 故障           | 230       | 160       | 90       | 50       |  |
| I A-G        | 229.942 3 | 160.276 1 | 90.109 6 | 49.957 4 |  |
| I AB         | 230.062 0 | 160.079 8 | 90.095 5 | 49.953 9 |  |
| I AB-G       | 230.066 1 | 160.077 5 | 89.875 3 | 49.613 6 |  |
| I ABC        | 230.148 1 | 159.850 1 | 89.621 2 | 49.598 1 |  |
| IB∥C-G       | 230.145 4 | 159.911 5 | 89.710 1 | 49.650 2 |  |
| IB∥C         | 230.164 4 | 159.913 5 | 89.716 0 | 49.648 9 |  |
| I A II BC-G  | 230.066 1 | 159.851 2 | 89.616 7 | 49.598 1 |  |
| I A [] BC    | 230.062 0 | 160.079 8 | 90.097 6 | 49.598 1 |  |
| I AB [] BC-G | 230.216 7 | 159.937 1 | 89.712 5 | 49.601 8 |  |
| I AB∥BC      | 230.089 0 | 159.941 9 | 89.961 3 | 50.050 8 |  |
| I A [] ABC-G | 230.203 8 | 159.902 9 | 89.682 6 | 49.498 8 |  |
| I A ∏ ABC    | 230.075 2 | 159.991 6 | 89.955 6 | 49.945 3 |  |

同塔双回线经不同过渡电阻(过渡电阻分别取 0 Ω、50 Ω、100 Ω、300 Ω)发生短路故障时的仿真结果如 表 4 所示。由表 4 可知,同塔双回线在发生不同短路 故障情况下,该算法无论过渡电阻大小,故障定位结果 均可取得较高精度,可避免过渡电阻的影响。

表 5 列出了 I 回线发生单相接地短路故障时, 数据不同步的故障定位结果。其中过渡电阻设为 50  $\Omega$ ,不同步角设为 $-\pi/3$ 、 $-\pi/6$ 、0、 $\pi/6$ 、 $\pi/3$ 。由表 5 可知,故障定位结果不受不同步角的影响。

| 短路故障         | 距离/km | 故障定位/km   |           |             |          |
|--------------|-------|-----------|-----------|-------------|----------|
|              |       | 300 Ω     | 100 Ω     | 50 <b>Ω</b> | 0 Ω      |
| I A-G        | 90    | 89.856 3  | 90.025 5  | 90.109 6    | 89.252 7 |
|              | 160   | 159.484 7 | 160.045 6 | 160.276 1   | 160.630  |
| I AB-G       | 90    | 89.314 5  | 89.747 9  | 89.875 3    | 90.546 5 |
|              | 160   | 160.286 4 | 159.965 4 | 160.077 5   | 160.375  |
| IB∥C-G       | 90    | 89.566 4  | 89.712 5  | 89.710 1    | 90.092   |
|              | 160   | 160.098 3 | 159.935 9 | 159.911 5   | 160.128  |
| I A [] BC-G  | 90    | 89.443 4  | 89.6307   | 89.616 7    | 90.124   |
|              | 160   | 160.094 2 | 159.910 8 | 159.851 2   | 159.934  |
| I AB [] BC-G | 90    | 89.421 8  | 89.660 3  | 89.712 5    | 89.955 8 |
|              | 160   | 160.341 3 | 159.955 2 | 159.937 1   | 160.100  |
| I A [] ABC-G | 90    | 89.371 5  | 89.575 5  | 89.682 6    | 90.103   |
|              | 160   | 160.431 9 | 159.930 0 | 159.902 9   | 159.657  |

表 4 过渡电阻对定位结果的影响

Tab. 4 Effect of location results on different transition resistances

#### 表 5 数据不同步对故障定位结果的影响

Tab. 5 Effect of fault location on different non-synchronous angles

| 不同步角 —   |         | IA-G      |
|----------|---------|-----------|
|          | 故障距离/km | 故障定位/km   |
| $-\pi/3$ | 90      | 89.995 0  |
|          | 160     | 159.989 4 |
| $-\pi/6$ | 90      | 90.109 6  |
|          | 160     | 160.276 1 |
| 0        | 90      | 90.193 0  |
|          | 160     | 160.565 4 |
| $\pi/6$  | 90      | 90.120 6  |
|          | 160     | 160.430 0 |
| $\pi/3$  | 90      | 90.022 3  |
|          | 160     | 160.286 9 |

## 4 结 语

同塔双回线存在相间和线间耦合,因此在进行 故障定位前需要对六相系统进行解耦计算,本文结 合均匀换位线路的相模变换矩阵的数学性质,根据 三相系统和六相系统之间的关系,推导出了能够适 用于同塔双回线的新相模变换矩阵。该矩阵可用单 一模量反映各种短路故障类型,且运算因子均为实数, 实数运算相对简单,并且可减少计算量。ATP-EMTP 仿真结果表明,将新相模变换矩阵用于同塔双回线 的故障定位中,故障定位结果不受故障类型、过渡电 阻和数据不同步的影响。

#### 参考文献:

- [1] 梁振锋,宋国兵,康小宁,等.数字化变电站同杆并架 平行双回线路保护的研究[J].西安理工大学学报, 2012,28(4):444-448.
  LIANG Zhenfeng, SONG Guobing, KANG Xiaoning, et al. Research on the protective relaying for double-circuit lines on the same tower in digital substation[J]. Journal of Xi'an University of Technology, 2012, 28(4): 444-448.
  [2] 李世龙,陈卫,邹耀,等.同杆并架线路阻抗比横联差 动保护研究[J].电工技术学报,2016,31(21):21-29.
- 动保护研究[J]. 电工技术学报, 2016, 31(21): 21-29. LI Shilong, CHEN Wei, ZOU Yao, et al. Transverse differential protection based on the ratio of impedance for double circuit lines on the same tower[J]. Transactions of China Electrotechnical Society, 2016, 31(21): 21-29.
- [3] 葛耀中.新型继电保护和故障测距原理与技术[M].西 安:西安交通大学出版社,2007.
- [4] 马静,史宇欣,马伟,等.基于分布参数的同杆双回线 跨线及接地故障单端定位方法[J].电网技术,2014, 38(9):2525-2531.

MA Jing, SHI Yuxin, MA Wei, et al. Distributed parameter based one-end fault location for inter-line fault and earth fault in double-circuit transmission lines on same tower[J]. Power System Technology, 2014, 38
(9): 2525-2531.

- [5] LIN B S, ELANGOVAN S. A fault location method for parallel transmission lines[J]. International Journal of Electrical Power and Energy Systems, 1999, 21(4): 253-259.
- [6] 孙立山,张晓友,陈学允. 平行双回线故障测距算法的 研究[J]. 电力系统自动化,1999,23(5):28-30. SUN Lishan, ZHANG Xiaoyou, CHEN Xueyun. Research on a new fault location method for parallel transmission lines[J]. Automation of Electric Power Systems, 1999, 23(5):28-30.
- [7] 束洪春,刘振松,彭仕欣. 耦合双回线路电弧故障测距的新相模变换方法[J]. 高电压技术,2009,35(3): 480-486.

SHU Hongchun, LIU Zhensong, PENG Shixin. Locating arc faults on coupling two parallel transmission lines using the novel phase-model transformation[J]. High Voltage Engineering, 2009, 35(3): 480-486.

[8] 李振兴,田斌,李振华,等.适用于单/双回线的双端 非同步故障测距方法[J].电力系统自动化,2016,40 (22):105-110.

LI Zhenxing, TIAN Bin, LI Zhenhua, et al. Twoterminal nonsynchronized fault location algorithms for single/double transmission lines [J]. Automation of Electric Power Systems, 2016, 40(22): 105-110.

[9] 桂勋,刘志刚,韩旭东,等.基于高压输电线电压沿线 分布规律的故障双端测距算法[J].中国电机工程学 报,2009,29(19):63-69.

GUI Xun, LIU Zhigang, HAN Xudong, et al. An accurate algorithm of two-terminal fault location based on the distribution of line voltage along HV transmission line[J]. Proceedings of the CSEE, 2009, 29(19): 63-69.

[10] 王守鹏, 赵冬梅, 商立群, 等. 基于线路分段参数的

非全程同塔双回线故障定位算法[J]. 电工技术学报, 2017, 32(20): 261-270.

WANG Shoupeng, ZHAO Dongmei, SHANG Liqun, et al. Fault location algorithm for incomplete doublecircuit transmission lines based on line segement parameters[J]. Transactions of China Electrotechnical Society, 2017, 32(20); 261-270.

- [11] MAZÓN A J, MIÑAMBRES J F, ZORROZUA M A, et al. New method of fault location on double-circuit two-terminal transmission lines [J]. Electric Power Systems Research, 1995, 35(3): 213-219.
- [12] 刘琦,邰能灵,范春菊,等.基于单端电气量的不对 称参数同塔四回线选相方法[J].电工技术学报, 2016,31(4):178-186.

LIU Qi, TAI Nengling, FAN Chunju, et al. Fault phase selection scheme for quadruple-circuit transmission lines with asymmetrical parameter based on singleended electrical quantities[J]. Transactions of China Electrotechnical Society, 2016, 31(4): 178-186.

- [13] 肖先勇,何婧宇,陈缨,等.非有效接地配电网单相接地故障定位的技术难点[J].电力科学与技术学报,2018,33(4):168-176.
  XIAO Xianyong, HE Jingyu, CHEN Ying, et al. Technological difficulty of single line ground fault location in neutral un-effective grounded distribution system[J]. Journal of Electric Power Science and Technology, 2018, 33(4):168-176.
- [14] 辛振涛,尚德基,尹项根. 一种双端测距算法的伪根 问题与改进[J]. 继电器,2005,33(6):36-38,45.
  XIN Zhentao, SHANG Deji, YIN Xianggen. False root and its improvement of a two-terminal fault location algorithm on transmission line[J]. Relay, 2005, 33(6):36-38,45.

(责任编辑 周 蓓)