DOI:10.19322/j. cnki. issn. 1006-4710. 2016. 03. 013

某大跨度波浪形屋面体型系数取值研究

高 亮¹, 崔 欣², 白 桦³, 刘健新³

(1. 西安理工大学 土木建筑工程学院,陕西 西安 710048;

2. 华北水利水电大学 土木与交通学院,河南 郑州 450045; 3. 长安大学 公路学院,陕西 西安 710064)

摘要:针对异形大跨屋盖结构的风荷载难取值问题,结合西安某项实际工程结构,通过刚体模型风 压分布特性风洞试验,从分区体型系数和局部体型系数两方面来分析波浪线形下凹曲面屋盖的压 力分布特性及其与规范中类似屋面体型系数的差别。结果表明:①波浪线形凹面屋盖除屋顶顶部 区域外,其余均为负压,且比规范中类似各类屋面取值均大,挑檐处及屋顶背风区表现最为明显;② 波浪线形凹面屋盖的体型系数衰减较快,屋顶背风区衰减较慢,跟屋面各曲线段的长度、曲率及其 割线斜率有关;③主入口处凹形分布墙体的负压系数远大于常规矩形分布墙体的值;④前墙开洞后 屋顶负压明显减小,侧墙负压亦减小,开墙对体型系数负值影响大,而对体型系数的正值影响较小。 对于一些与规范规定形状有一定差别的异形屋面,宜采用风洞试验确定其体型系数。考虑到规范 中体型系数的列表中没有波浪线形屋面这一项,建议对这种屋面进行系统研究。

关键词:大跨异型屋面;体型系数;风洞试验

中图分类号: TU317 文献标志码: A 文章编号: 1006-4710(2016)03-0328-05

Analogical researchon shape coefficient of the abnormal roofing structure with the standard GAO Liang¹, CUI Xin², BAI Hua³, LIU Jianxin³

(1. School of Civil Engineering and Architecture, Xi'an University of Technology, Xi'an 710048, China;
 2. School of Civil Engineering and Communication, North China University of Water Resources and Electric Power,

Zhengzhou 450045, China; 3. Highway Institute, Chang'an University, Xi'an 710064, China) Abstract: In order to ensure wind resistance safety of a long-span roof structure, wind tunnel tests on wind pressure distribution are conducted to analyze the shape coefficient when the internal pressure is changed with or without the wall. The result from the test is compared with the values of the related items in the "load code for the design of building structures" (GB 50009 -2012). Results show that: First, the shape coefficients of wave linear concave roof in addition to the roof top are all negative, they are larger than the standard values of the similar kinds of roofing, and the roof overhangs and the leeward roof area are the most obvious; second, wave linear concave roof shape coefficient decays fast, but the slower attenuation of the leeward roof area and the velocity decay is connected with the length of each curve segment, the curvature and its secant slope; third, the side walls at the main entrance with the concave distribution have a larger negative pressure coefficient than that with the conventional rectangular distribution, fourth, the roof pressure significantly decreases after open hole at the front wall, with side wall pressure decreasing, and the influence of open wall on the negative coefficient is great, and that on the positive coefficient is small; finally, tests results not only provide the reliable guidance for wind-resistant design, but also offer several amendments to the shape coefficient.

Key words: alien roofing structure; shape coefficient; wind tunnel test

收稿日期: 2016-01-07

基金项目:西安市建设科技资助项目(SJW2014012);西安理工大学博士科研启动基金资助项目(118211407);西安理工 大学科学研究计划资助项目(2015cx017)

作者简介:高亮,女,博士,讲师,研究方向为工程结构抗风及制振。E-mail:156820773@qq.com

随着建筑结构的优化,越来越多的设计者开始 注重建筑结构形式的变化和建筑的美学意义,因而 公共建筑中出现越来越多的大跨异型屋面结构,且 这类结构多采用轻质材料,故其对风作用敏感。由 于流体的绕流规律与结构形状关系密切,故而异形 屋面结构的风荷载作用机理更为复杂^[1]。从而导致 大跨异型屋面结构的设计风荷载没有一定的取用标 准,若按建筑结构荷载规范^[2]近似取用则不够准确。 国内外学者先后对球面^[3-4]、圆柱面^[5-6]及拱形屋 面^[7-8]等结构的风压分布规律进行了研究,对波浪线 形凹面结构^[9]的风荷载关注较少,而凹面造型轻巧 美观,在高速公路收费站及大型标志性建筑结构中 均有应用,值得研究。

本文以某国际会议中心^[10]为工程背景,通过刚 体模型测压风洞试验,研究了波浪线形凹面屋盖结 构的体型系数,并与规范中类似建筑体型系数对比, 得到了该类屋面结构的风荷载分布规律,为类似结 构设计提供参考和建议。

1 风洞试验

1.1 试验概况

该国际会议中心的主体结构长 149.2 m,宽 70.7 m。屋盖部分总长 181.8 m,宽 86.4 m,横轴 方向挑檐为 4.5 m,纵轴方向挑檐为 9 m。当地基 本风压 0.65 kN/m²(50 年),风荷载是其主要荷载 之一。试验采用刚性模型测压试验,在长安大学风 洞实验室 CA-1 大气边界层风洞中进行。结合当地 风环境,试验主要模拟了 C 类紊流场^[2]的速度和 紊流强度剖面,模拟效果良好。由于随风速变化,风 压系数基本保持不变,试验风速取 13 m/s,试验过 程中未发现模型有明显的变形和振动。压力测量系 统由 PSI 电子压力扫描阀和自编的信号采集及数据 处理软件组成,测压信号采样频率为 312 Hz,采样 时长约 30 s,试验数据包括各测点在每个风向角下 的风压时程信号和参考点处的总压和静压时程信 号,共记录数据超过1亿个。

1.2 试验模型、测点布置及实验工况

试验模型为刚体模型,如图1所示。模型屋盖 部分由有机玻璃板和泡沫板制作,几何缩尺比设置 为1:150。

模型测点布置按照试验工况分为前墙打开、前 墙关闭两种,其中双面测压点均为 36 对,单面测压 点在前墙打开时为 174 个,前墙关闭时为 182 个。

风向角设置为沿逆时针每间隔 15°为一个工况,共进行了 24 个风向角的试验,合计 48 个工况,风向角及测点布置如图 2 所示(按实线分区),文中所述前墙为图 2 中西玻璃幕墙(31 区、32 区)。

图 2 风向角及屋盖测点平面投影分区示意图(实心点为双面测压点) Fig. 2 Wind angle and measuring-point arrangement (shadows point for double pressure points)

2 试验结果及分析

2.1 试验数据处理

根据试验数据计算出各测点所有风向角对应的

平均风压系数^[11]C_{Pmean}。

同时根据《建筑结构荷载规范》(GB50009-2012),对非悬挑部分单面测压点取内压系数ψ进行修正,即单面测压点的平均风压系数为:

 $C_{Pmean} = (C_{Pmean})_{test} \pm \psi$ (1) 式中, $\psi = \pm 0.2(Z/H_G)^{2\alpha}$,其中, Z 为测点高度, H_G 为梯度风高度, $\psi = (C_{Pmean})_{test}$ 同号。

对于双面测压点, C_{Pmean} 为内外表面的平均净 压系数,不做内压修正。

结构表面各测点的局部体型系数:

$$\mu_{\rm s} = \left(\frac{H_{\rm G}}{Z}\right)^{2a} C_{\rm Pmean} \tag{2}$$

式中各符号意义同前。

分区体型系数为该区各测点压力系数关于面积 的加权平均。

2.2 分区体型系数

由于屋盖部分为波浪线形下凹曲面,按照屋盖 体型变化,将屋盖首先划分为7个区,再将此7个区 按屋顶造型细分,故分区较多,共32个区,其中外墙 (南侧1区、北侧2区)、内墙(南侧3区、北侧4区)、 西外墙(31区、32区)和二楼会议室前门(24区)共7 个区,屋盖平面投影分区如图2所示。将各区中所 有测点的局部体型系数按从属面积进行加权平均, 得到各区的分区体型系数,并与规范体型系数进行 类比。屋面各工况分区体型系数如表1所示。

表1 屋面代表性区域0°及180°风向角时分区体型系数 Tab.1 Regional shape coefficients of roof representative measuring-points

工况	风向 角	5区	6区	7区	17区	18 🗵	21 区	12 区
前墙开	0°	-1.84	-1.07	-0.80	0.09	-1.48	-1.27	-0.88
	180°	-0.56	-0.28	-0.34	-1.33	-1.25	-0.83	-1.42
前墙闭	0°	-2.20	-1.22	-0.93	-0.13	-1.76	-1.48	-1.08
	180°	-0.65	-0.31	-0.41	-1.49	-1.36	-0.96	-1.57

与规范风荷载体型系数计算封闭式带雨篷的 双坡屋面(如图 3 所示)及封闭式拱形屋面(如图 4 所示)相比,可见:①西区挑檐(5 区)和东区挑檐 (12 区)处于迎风区时均为负压,且西区的压力值 较东区的大,并在前墙开、闭两种工况下的压力系 数均大于规范的 1.4;②东、西区挑檐处于尾流区 时亦均为负压,且在前墙开、闭两种工况下的压力 系数均大于规范的 0.3;③屋面体型系数除 17 区 屋顶部分外,其余均为负压,最大负压出现在迎风 侧挑檐和屋顶背风侧,下凹曲面形屋盖的风压分 布具有典型性;④前墙开洞能显著降低屋盖负 压值。

屋顶幕墙各工况体型系数如图 5 所示。由图 5 可知:①除接近屋脊区域的 29 区、30 区在部分风向 角时受到正压外,其余区域在所有风向角下都受到 负压,且压力较大;②29 区和 30 区关于结构纵轴对 称,而体型系数却出现明显的不对称性质,主要由于 结构北侧的高层建筑的影响;③屋顶底部 25 区~28 区南北侧幕墙体型系数表现出比较好的对称性,说 明北侧高层对其影响较小;④前墙开洞能显著降低 屋顶幕墙负压值。

图 3 封闭式带雨篷的双坡屋面

图 4 封闭式拱形屋面

主体围护结构侧墙为玻璃幕墙,西侧主入口处 侧墙具体分布如图 6 所示。

图 6 西侧主入口处幕墙分布及分区示意 Fig. 6 Distribution and partition of curtain wall

西侧幕墙(31 区、32 区)所占整面墙体面积不到 50%,其余部分缩进至二楼会议室门前(24 区),故 而主入口处的幕墙开孔状况对该区域的流场分布及 结构在风荷载作用下的安全性的影响不容忽略。侧 墙区域的体型系数如表2所示。

由表 2 可知:①0°风向角时,即主入口处于迎风 口时,开墙后 1 区、2 区负压减小,3 区、4 区、24 区 负压减小,正压增大;②南北内、外侧墙的体型系数 均大于规范(建筑结构荷载规范 GB 50009—2012 中表 8.3.1 中第 2 项)的建议取值(-0.7),且西侧 幕墙处于尾流区时约为规范值-0.5 的 200%;③开 墙对体型系数负值影响大,而对体型系数的正值影 响较小。

表 2 侧墙区域 0°及 180°风向角时分区体型系数 Tab. 2 Regional shape coefficients of wall representative measuring-points

工况	风向角	1区	2区	3 区	4 区	31 区	32 区	24 区
前 墙 开	0°	-0.902	-0.878	0.807	0.808	—	—	0.823
	180°	-0.915	-0.922	-0.813	-0.808	—	—	-0.807
前 墙 闭	0°	-1.100	-1.039	0.786	0.748	0.658	0.477	0.755
	180°	-1.004	-1.010	-0.952	-0.944	-1.020	-0.999	-0.989

2.3 局部体型系数

采用 2.1 节所述方法算出各测点的局部体型系 数 μ_s。通过分析 μ_s 可得到更为具体的压力分布及 变化规律。选择屋盖中轴线测点分别在 0°和 180° 风向角下的局部体型系数进行对比分析(见图 7)。

与规范带雨篷的双坡屋面(如图 3 所示)相比, 在 0°风向角下,①屋面除屋顶迎风区(17 区顶部)外 均为负压,且负压明显比规范值大;②迎风面和背风 面挑檐均为负压,且迎风区(5 区)大于背风区(12 区),并远大于规范-0.3;③每一片下凹曲面的压力 分布(5~7 区)均为顺着流场方向压力逐渐减弱,第 二片靠近与前一片结合处压力增强,但不会大于第 一片的前部;④屋顶背风区(18 区、21 区、12 区)压 力衰减较慢,与屋面各曲线段的长度、曲率及其割线 斜率有关。在180°风向角下,①屋面除屋顶尾流区 (6 区~8 区)外均为负压,且负压明显比规范值大; ②尾流区挑檐压力接近0,比规范-0.3 压力小;③ 迎风面挑檐为负压,绝对值大于规范值1.4,但与0° 风向角时迎风面挑檐压力相比要小近30%,主要与 挑檐长度有关。与规范封闭式拱形屋面(如图4 所 示)相比,下凹曲面屋盖表面压力(5 区~7 区)全为 负压,迎风区没有出现正压,且负压值较大。

Fig. 7 Local shape coefficients of central axis measuring point of the roof

与规范封闭锯齿形屋面(图 8)类比,波浪线形 下凹面屋盖的体型系数衰减较快,但整体压力值较 大。与规范封闭复杂多跨屋面(图 9)类比,波浪线 形下凹面屋盖的体型系数整体风吸力较大,尤其是 靠近屋脊的背风侧。 图 7 中同时给出了各区在前墙开、闭工况及各 风向角下的极值分区体型系数(图中括号内数值), 对比发现,直接用大区的体型系数并不能完全包住 最不利情况,如第5 区挑檐边缘部和第6 区凹面顶 部靠挑檐区域;在有些区域按极值分区体型系数取 值又太大,如180°风向角下的第7区和0°风向角下 的第17区;故建议按照各风向角下的分区体型系数 分别进行计算。

图 8 封闭式锯齿形屋面 Fig. 8 Enclosed structure with the zigzag roof

图 9 封闭式复杂多跨屋面 Fig. 9 Enclosed structure with the complex multispan roof

3 结 语

 1) 波浪线形凹面屋盖除屋顶顶部区域外,其余 均为负压,且比规范中类似各类屋面取值均大,挑檐 处及屋顶背风区表现最为明显;

 2)波浪线形凹面屋盖的体型系数衰减较快,屋 顶背风区衰减较慢,与屋面各曲线段的长度、曲率及 其割线斜率有关;

 主人口处凹形分布墙体的负压系数远大于 常规矩形分布墙体的值;

 4)前墙开洞后屋顶负压明显减小,侧墙负压亦 减小,开墙对体型系数负值影响大,而对体型系数的 正值影响较小。

对于一些与规范中规定形状有一定差别的异形 屋面,宜采用风洞试验确定其体型系数,进而计算结 构风荷载。考虑到规范中体型系数的列表中没有波 浪线形屋面这一项,建议对这种屋面进行系统研究。

参考文献:

- [1] CHENG C M, FU C L. Characteristic of wind loads on a hemispherical dome in smooth flow and turbulent boundary layer flow[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(6-7): 328-344.
- [2] 中华人民共和国住房和城乡建设部. 建筑结构荷载规 范:GB 50009-2012 [S]. 北京:中国建筑工业出版社, 2012.
- [3] FAGHIH A K, BAHADORI M N. Three dimensional numerical investigation of air flow over domed roofs [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(3): 161-168.

- [4] NYI N A, YE Jihong. Coherence of wind pressure on dome [J]. Journal of Southeast University (English Edition), 2010,26(1):100-106.
- [5] LI Y Q, TAMURA Y, YOSHIDA A, et al. Wind loading and its effects on single-layer reticulated cylindrical shells [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94(12): 949-973.
- [6]周晅毅,顾明,米福生,等.干扰条件下煤棚结构风致 干扰特性研究[J].振动工程学报,2009,22(6):652-658.
 ZHOU Xuanyi, GU Ming, MI Fusheng, et al. Interference effects on wind induced responses of dry coal sheds

ence effects on wind induced responses of dry coal sheds [J]. Journal of Vibration Engineering, 2009, 22(6): 652-658.

- [7] 张明亮,李秋胜. 复杂体型大跨屋盖风荷载特性的风洞 试验研究[J]. 建筑结构, 2012, 42(2): 148-153. ZHANG Mingliang, LI Qiusheng. Experimental study of wind load characteristics on a long-span complex roof structure [J]. Building Structure, 2012, 42(2): 148-153.
- [8] 马文勇,刘庆宽,肖彬.典型拱形壳体风荷载分布规律
 [J].土木建筑与环境工程,2011,33(5):63-68.
 MA Wenyong, LIU Qingkuan, XIAO Bin. Windloads distribution on typical vaulted shells [J]. Journal of Civil, Architectural & Environmental Engineering, 2011, 33(5):63-68.
- [9] 马文勇,刘庆宽,尉耀元.具有凹面外形的大跨屋盖结构风荷载分布及风洞试验研究[J].振动与冲击,2012,31(22):34-38.
 MA Wenyong, LIU Qingkuan, WEI Yaoyuan. Wind load distribution and wind tunnel test for a curved concave long-span roof [J]. Journal of Vibration and Shock, 2012, 31(22): 34-38.
- [10] 长安大学风洞实验室. 西安曲江国际会议中心风洞试验研究[R]. 西安:长安大学风洞实验室, 2009.