DOI:10.19322/j. cnki. issn. 1006-4710. 2019. 04. 001

气压及温度衰减对 C₄F₇N 分解组分影响规律研究

付钰伟, 同向前, 尹忠刚, 段建东, 伍文俊

(西安理工大学 自动化与信息工程学院,陕西 西安 710048)

摘要: C_4F_7N 以其显著的绝缘能力和低 GWP 值成为目前有望代替 SF_6 作为绝缘介质的气体之一。但是, C_4F_7N 在绝缘击穿过程中会分解成低碳低氟的小分子,引起绝缘强度发生变化,给设备及其所在电力系统的安全可靠运行带来潜在威胁。本文建立化学动力学模型研究 C_4F_7N 分解组分在绝缘击穿过程中的演化规律,获得 C_4F_7N 分解组分的变化特性以及温度衰减、气压的影响规律。结果表明:绝大部分 C_4F_7N 分解组分随着温度的降低迅速复合为 C_4F_7N ,因此 C_4F_7N 具有良好的绝缘自恢复特性;较高的温度衰减速度降低了 C_4F_7N 的复合速率,使得同一温度下的 C_4F_7N 摩尔分数有所下降,不利于绝缘强度恢复过程;气压的提升促进了 C_4F_7N 的复合过程,使其摩尔分数在更高温度下接近于 1,有利于绝缘强度恢复。研究结果可以为 C_4F_7N 作为绝缘介质的可行性研究奠定理论基础。

关键词:分解组分;绝缘击穿; C_4F_7N ;化学动力学模型;变化特性

中图分类号: TM835 文献标志码: A 文章编号: 1006-4710(2019)04-0395-06

Influence of pressure and temperature on $C_4 F_7 N$ decomposition components

FU Yuwei, TONG Xiangqian, YIN Zhonggang, DUAN Jiandong, WU Wenjun (School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China)

Abstract: Owing to the excellent insulation performance and low GWP, C_4F_7N has become one of the promising gases to replace SF_6 as insulation medium. However, it will decompose to small fraction under dielectric breakdown and thus decrease the insulation strength, which is a potential threat to the safety operation of power system. Therefore, this paper builds a chemical kinetic model to study the variation characteristic of C_4F_7N decomposition components during dielectric breakdown, with the influence of pressure and temperature on C_4F_7N decomposition components obtained. The study shows that most fractions will recombine to C_4F_7N with temperature decreasing, so C_4F_7N has a great insulation-recovery property. High temperature decreasing rate causes a drop of C_4F_7N recombining rate and leads to the declination in the molar fraction of C_4F_7N at same temperature, which is harmful to insulation-recovery process. The growth of pressure promotes the recombination of C_4F_7N , making its molar fraction close to one at higher temperatures, which is helpful in the insulation-recovery process. This study is hopeful to lay a theoretical basis for the application of C_4F_7N as insulation medium.

Key words: decomposition components; dielectric breakdown; C₄ F₇ N; chemical kinetic model; variation characteristics

SF₆作为优良的绝缘和灭弧介质被广泛应用于高压电气设备中^[1]。但是 SF₆是一种很强的温室气体,其全球变暖潜势(global warm potential,GWP)

大约为 CO₂的 23 900 倍^[2],排入大气中最高可存在 3 200 年,对气候变暖具有较强的累积效应^[3]。因此,1997 年《京都议定书》将 SF₆列为需全球严格管

收稿日期: 2018-11-28

基金项目: 国家自然科学基金资助项目(51807160);中国博士后科学基金资助项目(2019T120943,2018M643701);陕西

省高校科协青年人才托举计划资助项目(20190417)

作者简介:付钰伟,女,讲师,博士,研究方向为电力设备故障诊断与状态评估。E-mail: fuyuwei@xaut, edu. cn

制使用的六大温室气体之一,要求到 2020 年基本限制 SF₆的使用^[4]。因此,寻找新型 SF₆替代气体以削减 SF₆的使用对于有效应对全球气候变暖问题、保证电力从业者的健康具有极大的环境效益和社会效益。

目前主要研究的 SF₆ 替代气体可以分为如下四种:常规气体(N₂、Air、CO₂等)、SF₆混合气体(SF₆+N₂、SF₆+CF₄等)、强电负性气体(CF₃I、c-C₄F₈、C₆F₈等)及其混合气体、新型人工合成环保气体(C₄F₇N和 C₅F₁₀O)及其混合气体等。对于常规气体^[5-6],其绝缘强度较同等实验条件下的 SF₆还有很大差距,需要通过提高设备内部气压并增大设备尺寸以获得与 SF₆相当的绝缘强度,因此不利于大范围推广使用。对于 SF₆混合气体^[7],其中 SF₆含量都高达50%以上,CF₄的 GWP 值高达 SF₆的 1/3 左右,因此使用 SF₆混合气体无法从根本上解决温室效应问题。对于强电负性气体及其混合气体^[8],其中 CF₃I以其接近 CO₂的 GWP 值及优于 SF₆的绝缘强度,受到人们的关注^[8]。但是,CF₃I 在放电中会大量析出单质碘,从一定程度上降低了绝缘性能。

近年来,人们对 SF_6 的替代气体进行了大量研究 [9-20],值得注意的是,上述新型替代气体分子在绝缘击穿过程中会分解成低碳低氟的小分子,如果随着温度降低未能重新复合,气体的绝缘强度可能会发生明显变化,这将给设备及其所在电力系统的安全可靠运行带来潜在威胁。但是,上述体系中电子温度会偏离重粒子温度,化学反应的驰豫时间大于粒子对流、扩散等暂态变化过程的特征时间,导致放电等离子体同时偏离热力学平衡和化学平衡,过渡到非平衡状态,因此基于局部热力学平衡假设的传统方法会带来较大误差,需要借助化学动力学模型研究绝缘击穿过程中体系组分的变化特性。 $Fu^{[21]}$ 采用化学动力学模型针对 C_5F_{10} O 绝缘击穿分解过程及其分解组分特性开展了初步研究,获得了 C_5F_{10} O分解产物随时间和气压的变化规律。

因此,本文建立化学动力学模型研究 C_4F_7N 分解组分在绝缘击穿过程中的演化规律,获得 C_4F_7N 分解组分的变化特性以及温度衰减速度、气压等因素的影响规律,为 C_4F_7N 作为绝缘介质的可行性研究以及新型气敏传感器的研制奠定理论基础。

1 研究方法

假设 C_4F_7N 绝缘击穿发生在封闭系统 S 中,所有组分演化过程服从质量守恒、元素守恒和化学计量数守恒。假设系统 S 中包含 N 个不同粒子,用 c_4

表示第i种粒子。由系统S满足元素守恒可得:

$$b_j = \sum_{i=1}^{N} a_{ji} n_i(t), j = 1, 2, 3, \dots, L$$
 (1)

式中: $n_i(t)$ 为粒子 c_i 的摩尔数; a_{ji} 为粒子 c_i 中元素 e_j 的计量数; b_j 为系统S中元素 e_j 的总摩尔数;L为系统中元素e的数量:t为时间。

假设系统 S 中发生 M 个化学反应 $\{R_1,R_2,R_3,\cdots,R_M\}$,分别用 ν_{ki} 和 ν'_{ki} 表示第 k 个化学反应 R_k 的正向、逆向化学计量数,因此 R_k 的反应率 w_k 可以表示为:

$$w_k = \frac{1}{\nu_{ki} - \nu'_{ki}} \left(\frac{\partial y_i}{\partial t}\right)_k, \ k = 1, 2, 3, \dots, M \tag{2}$$

式中: ν_i 为粒子 c_i 的化学计量数; y_i 为粒子 c_i 的浓度。根据质量作用定律, 反应率 w_k 还可以用速率系

数表示:
$$w_k = r_k(T) \prod_{i=1}^N y_{i^{ki}}^{v_{ki}} \tag{3}$$

式中: $r_k(T)$ 为化学反应 R_k 的速率系数。

因此,可以得到化学反应 R_k 对粒子 c_i 的净生成作用:

$$\left(\frac{\partial y_i}{\partial t}\right)_k = (\nu_{ki} - \nu'_{ki})r_k(T) \prod_{i=1}^N y_{iki}^{\nu_{ki}}$$
(4)

粒子 c_i 的总摩尔量变化率可以表示为所有化学 反应对其净生成作用之和,即得到描述系统 S 中粒子 c_i 组分构成的动力学方程(粒子 c_i 的净生成率):

$$\frac{\mathrm{d}n_{i}(t)}{\mathrm{d}t} = \sum_{k=1}^{M} (\nu'_{ki} - \nu_{ki}) V(t)^{1 - \sum_{i=1}^{N} \nu_{ki}} r_{k}(T) \prod_{i=1}^{N} n_{i}^{\nu_{ki}}(t)$$
(5)

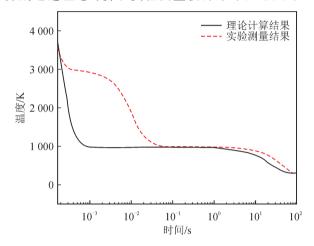
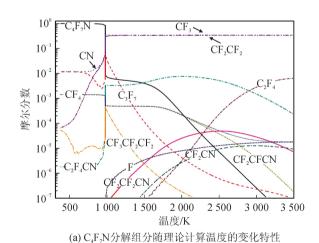
式中:V(t)为系统 S 的体积。

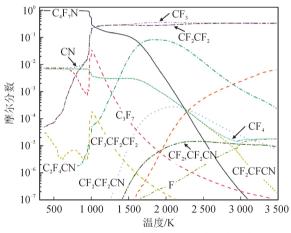
通过求解式(5)即可获得 C4F7N 分解组分在绝 缘击穿过程中的演化规律。为此,本文共考虑了16 种化学反应,包括 22 种粒子(C₄F₇N、CF₃CF₃CCN、 CF₃ CFCF₂ CN, CF₂ CFCNCF₃, C₃ F₇, CF₃ CF₂ CF₂, C_2F_4CN , CF_2CFCN , CF_4 , CF_2CFCF_3 , C_2F_4 , CF_2CF_2CN , CF_2 , CF_2 CN, C_2 F_2 CN, CF_3 CCF_3 , CCF_3 , CF_2 CF_2 , CNCFCF、CF₃、CN和F)。C₄F₇N在绝缘击穿过程 的中性分解产物占据主导,而且这些中性产物对衡 量 C₄F₇N 的绝缘特性十分关键,因此本文着重讨论 的是中性粒子的变化特性。需要指出的是,本文所 采用的化学动力学模型对研究 C4F7N 电弧放电产 物演化特性同样适用,而由于电弧温度高达上万度, 电子具有较高的浓度和碰撞能量,因此中性粒子在 电子碰撞、吸附等作用下成为带电粒子,其变化特性 对于研究电弧开断特性非常重要,因此这种情况下 的带电粒子不能忽略。

2 结果与讨论

2.1 温度衰减的影响

由于 C_4 F_7 N 发生绝缘击穿时的温度衰减特性 尚不清楚,而 SF_6 绝缘击穿所经历的温度范围为 3 500 K~300 K,因此本文选用 3 500 K~300 K 温 度段内电流零区自由恢复 SF_6 电弧温度衰减特性曲 线作为 C_4 F_7 N 绝缘击穿温度函数 [21] ,该温度函数 分别通过理论计算和实验测量获得,如图 1 所示。


图 1 温度衰减曲线 Fig. 1 Temperature variation curve

绝缘击穿开始时,体系内最主要的成分仍然为 C_4F_7N 分子,其余粒子含量可视为零;然而 C_4F_7N 在 3 500K 高温下开始分解,分解组分随温度衰减而不断变化。

图 2(a)给出了 0.02MPa 气压下, C₄ F₇ N 分解组分随绝缘击穿温度变化的规律, 其中温度衰减函数采用理论计算结果。图 2(b)为采用实验测量的温度衰减函数所计算得到的 C₄ F₇ N 分解组分变化规律,气压为 0.02 MPa。

图 $2 + C_4F_7N$ 分子的摩尔分数随温度降低而逐渐升高,在 1000 K 以下迅速恢复至 1 附近,化学反应 $C_3F_7+CN \rightarrow C_4F_7N$ 、 $C_2F_4CN+CF_3 \rightarrow C_4F_7N$ 和 $CF_2CFCN+CF_4 \rightarrow C_4F_7N$ 对该过程具有较大贡献,表明绝缘击穿所带来的高温即使诱导 C_4F_7N 分子全部分解,绝大部分分解组分也能随着温度的降低迅速复合为 C_4F_7N ,因此 C_4F_7N 具有良好的绝缘自恢复特性。但是,由于化学反应从非平衡状态过渡到新的平衡态需要一定时间(弛豫过程),体系在 300 K 温度下仍然存在 CN 、 CF_3 、 CF_2CF_2 、 C_2F_4CN 和 $CF_3CF_2CF_2$ 等尚未来得及复合为 C_4F_7N 的组分,其绝缘强度明显低于 C_4F_7N ,可能会导致体系绝缘强度下降。

(b) C₄F₂N分解组分随实验测量温度的变化特性

图 2 0.02MPa 气压下 C₄F₇N 分解组分在不同温度衰减函数下的变化特性

 $Fig.~2 \quad Variation~of~C_4\,F_7\,N~decomposition~components~with~different~temperature~variation~curves~under~0.~02~MPa~pressure~p$

根据图 1,理论计算获得的温度函数相较于实验测量结果具有更快的衰减速度,使得多原子粒子不能够及时合成,因此反应体系在较高的温度衰减速度下会在更大程度上偏离平衡态。

通过对比图 2(a) 和(b) 不难发现,较高的温度 衰减速度降低了 C_4F_7N 复合速率,使得同一温度下的 C_4F_7N 摩尔分数有所下降,同时提升了 CN、 CF_3 、 CF_2CF_2 等组分在 300 K 下的摩尔分数,不利于 绝缘强度恢复过程。

2.2 气压的影响

本文选取 300 K 下的主要组分 C_4F_7N 、 C_2F_4CN 、 C_3F_7 、 CF_3 、 CF_4 和 CN 来说明气压对 C_4F_7N 分解组分变化特性的影响(见图 3)。

粒子摩尔分数在1000 K突然降低是因为此时温度衰减速率非常高,粒子摩尔分数无法在极短时间内做出反应所致。

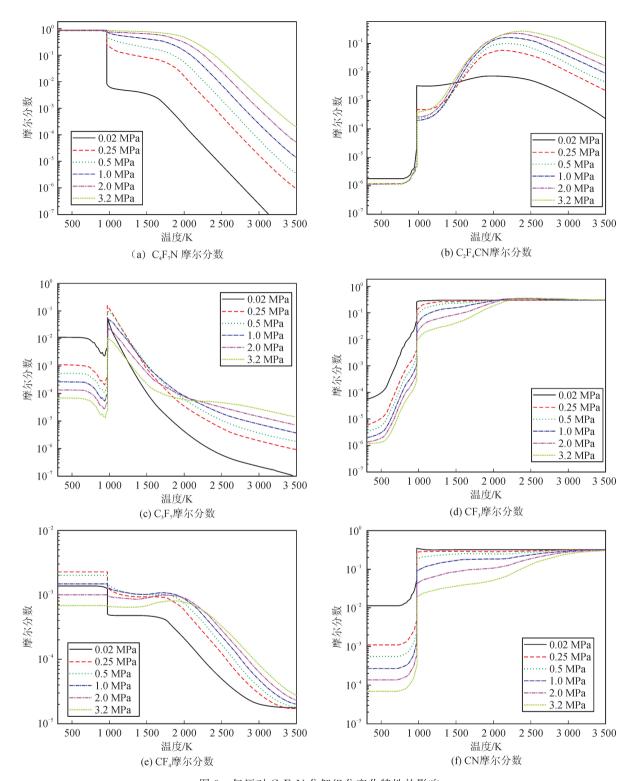


图 3 气压对 C₄F₇N 分解组分变化特性的影响 Fig. 3 Influence of pressure on C₄F₇N decomposition components variation

如图 3(a),当气压为 0.02 MPa 时, C_4F_7N 在 3100 K以上完全分解,摩尔分数下降至 10^{-7} 以下,在 1000 K 则快速增长至 1 左右;随着气压的提升, C_4F_7N 摩尔分数显著升高,极大地促进了 C_4F_7N 复合过程,使其摩尔分数在更高温度下接近于 1,有利于绝缘强度恢复。这是因为气压的升高增加了体系

内粒子密度,从而提高了 C₄F₇N 复合率。

如图 3(b),在 1500 K 以上,升高气压可以提高 C_2F_4 CN 生成率,促进其摩尔分数的提升;而在 1500 K以下,气压变化对 C_2F_4 CN 特性曲线无明显影响规律,这是生成和消耗 C_2F_4 CN 的化学反应的竞争结果。

如图 3(c),在 1000 K 以下,气压变化对 C_3 F₇ 特性曲线无明显影响规律,这是生成和消耗 C_3 F₇ 的 化学反应的竞争结果;而在 1000 K 以上,升高气压可以提高 C_3 F₇ 生成率,促进其摩尔分数的提升。

如图 3(d),在 2~200~K以上,气压的变化对 CF_3 摩尔分数特性曲线没有显著影响;在 2~200~K以下,气压的提升带来了更高的 CF_3 消耗率,降低了 CF_3 摩尔分数,促进 CF_3 向 C_4F_7N 转化,有利于绝缘强度恢复。

如图 3(e),在1800 K以上,升高气压可以提高 CF₄生成率,促进其摩尔分数的提升;而在1800 K以下,气压变化对 CF₄特性曲线无明显影响规律,这 是生成和消耗 CF₄的化学反应的竞争结果。

如图 3(f),在 $3\,000\,K$ 以上,气压的变化对 CN 摩尔分数特性曲线没有显著影响;在 $3\,000\,K$ 以下,气压的提升带来了更高的 CN 消耗率,降低了 CN 摩尔分数,促进 CN 向 C_4F_7N 转化,有利于绝缘强度恢复。

3 结 语

 C_4F_7N 以其显著的绝缘能力和低 GWP 值成为目前有望代替 SF₆作为绝缘介质的气体之一。但是, C_4F_7N 在绝缘击穿过程中会分解成低碳低氟的小分子,引起绝缘强度发生变化,给设备及其所在电力系统的安全可靠运行带来潜在威胁。

本文建立化学动力学模型研究 C_4F_7N 分解组分在绝缘击穿过程中的演化规律,获得 C_4F_7N 分解组分的变化特性以及温度衰减速度、气压的影响规律。

研究结果表明:

- 1) 绝缘击穿所带来的高温即使诱导 C_4F_7N 分子全部分解,绝大部分分解组分也能随着温度的降低迅速复合为 C_4F_7N ,因此 C_4F_7N 具有良好的绝缘自恢复特性;
- 2) 较高的温度衰减速度降低了 C_4F_7N 复合速率,使得同一温度下的 C_4F_7N 摩尔分数有所下降,同时提升了 CN_*CF_3 、 CF_2CF_2 等组分在 300K 下的摩尔分数,不利于绝缘强度恢复过程:
- 3) 气压的提升使得 C_4 F_7 N 摩尔分数显著升高,极大地促进了 C_4 F_7 N 复合过程,使其摩尔分数在更高温度下接近于 1,有利于绝缘强度恢复。

研究结果可以为 C_4F_7N 作为绝缘介质的可行性研究奠定理论基础。

参考文献:

- [1] 杨金东,肖齐,陶晔,等. 含小电源的地方电网区域备自投的研究[J]. 西安理工大学学报,2018,34(1):48-54.
 - YANG Jindong, XIAO Qi, TAO Ye, et al. Study of the backup automatic switch of local power grid with small power[J]. Journal of Xi'an University of Technology, 2018, 34(1):48-54.
- [2] WATSON R. Common themes for ecologists in global issues[J]. Journal of Applied Ecology, 1999, 36(1): 1-10.
- [3] CHRISTOPHOROU L G, OLTHOFF J K, VAN BRUNT R J. Sulfur hexafluoride and the electric power industry [J]. IEEE Electrical Insulation Magazine, 1997, 13(5):20-24.
- [4] REILLY J M, PRINN R G, HARNISCH J, et al. Multi-gas assessment of the Kyoto Protocol [J]. Nature, 1999, 401(7):549-555.
- [5] SAITOH H, MORITA K, KIKKAWA T, et al. Impulse partial discharge and breakdown characteristics of rod-plane gaps in air and N₂ gases[J]. Electrical Engineering in Japan, 2004, 148(3):36-43.
- [6] ROKUNOHE T, YAGIHASHI Y, ENDO F, et al. Fundamental insulation characteristics of air, N_2 , CO_2 , N_2/O_2 and SF_6/N_2 mixed gases[J]. IEEJ Transactions on Power and Energy, 2005, 125(6):619-625.
- [7] 赵虎, 李兴文, 贾申利, 等. 1 个大气压下 50% SF₆-50% CF₄混合气体电击穿特性的研究[J]. 中国电机工程学报, 2013, 33(19):200-207.

 ZHAO Hu, LI Xingwen, JIA Shenli, et al. Study of dielectric breakdown properties in 50% SF₆-50% CF₄ mixtures at 1 atm[J]. Proceedings of the CSEE, 2013, 33(19):200-207.
- [8] ZHANG X X, XIAO S, HAN Y F, et al. Experimental studies on power frequency breakdown voltage of CF₃ I/N₂ mixed gas under different electric fields [J]. Applied Physics Letters, 2016, 108(9):092901.
- [9] LIXW, GUOXX, MURPHYAB, et al. Calculation of thermodynamic properties and transport coefficients of C₅F₁₀O-CO₂ thermal plasmas[J]. Journal of Applied Physics, 2017, 122(14): 143302.
- [10] ZHONG L L, RONG M Z, WANG X H, et al. Compositions, thermodynamic properties, and transport coefficients of high-temperature C_5 F_{10} O mixed with CO_2 and O_2 as substitutes for SF_6 to reduce global warming potential[J]. AIP Advances, 2017, 7(7): 075003.
- [11] WUY, WANGCL, SUNH, et al. Evaluation of

- SF₆-alternative gas C5-PFK based on arc extinguishing performance and electric strength[J]. Journal of Physics D: Applied Physics, 2017,50(38): 385202.
- [12] WU Y, WANG C L, SUN H, et al. Properties of C₄F₇N CO₂ thermal plasmas: thermodynamic properties, transport coefficients and emission coefficients
 [J]. Journal of Physics D: Applied Physics, 2018, 51 (15): 155206.
- [13] ZHANG X X, LI Y, XIAO S, et al. Decomposition mechanism of C₅F₁₀O: an environmentally friendly insulation medium[J]. Environmental Science & Technology, 2017, 51(17): 10127-10136.
- [14] FU Y W, WANG X H, LI X, et al. Theoretical study of the decomposition pathways and products of C5-perfluorinated ketone (C5 PFK)[J]. AIP Advances, 2016,6(8): 085305.
- [15] ZHANG X X, LI Y, XIAO S, et al. Theoretical study of the decomposition mechanism of environmentally friendly insulating medium C₃ F₇ CN in the presence of H₂O in a discharge[J]. Journal of Physics D: Applied Physics, 2017, 50(32): 325201.
- [16] LI Y, ZHANG X X, XIAO S, et al. Decomposition properties of C₄ F₇ N/N₂ gas mixture; an environmentally friendly gas to replace SF₆[J]. Industrial & Engineering Chemistry Research, 2018, 57 (14):

- 5173-5182.
- [17] YU X J, HOU H, WANG B S, et al. Mechanistic and kinetic investigations on the thermal unimolecular reaction of heptafluoroisobutyronitrile [J]. Journal of Physical Chemistry A, 2018, 122(38):7704-7715.
- [18] ANDERSEN M P S, KYTE M, ANDERSEN S T, et al. Atmospheric chemistry of (CF₃)₂ CF-CN: a replacement compound for the most potent industrial greenhouse gas, SF₆ [J]. Environmental Science & Technology, 2017, 51(3):1321-1329.
- [19] BLAZQUEZ S, ANTINOLO M, NIELSEN O J, et al. Reaction kinetics of (CF₃)₂CFCN with OH radicals as a function of temperature (278-358 K): a good replacement for greenhouse SF₆? [J]. Chemical Physics Letters, 2017, 687:297-302.
- [20] LIY, ZHANG XX, CHEN Q, et al. Influence of oxygen on dielectric and decomposition properties of C₄F₇N-N₂-O₂ mixture[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(4):1279-1286.
- [21] FU Y W, WANG X H, YANG A J, et al. The varying characteristics of C₅ F₁₀ O decomposition components at 300 K-3500 K with a chemical kinetic model [J]. AIP Advances, 2019, 9(1):015318.

(责任编辑 周 蓓)