DOI:10.19322/j. cnki. issn. 1006-4710.2023.03.007

https://xuebao. xaut. edu. cn

引文格式:尹作堂,常军. 2000—2020 年黄河流域土壤侵蚀及其驱动因素分析[J]. 西安理工大学学报,2023,39(3):360-368. YIN Zuotang, CHANG Jun. Analysis of soil erosion and its driving factors in the Yellow River Basin from 2000 to

> 2000—2020 年黄河流域土壤侵蚀及其 驱动因素分析

2020 [J]. Journal of Xi'an University of Technology, 2023, 39(3):360-368.

尹作堂,常 军

(山东师范大学 地理与环境学院,山东 济南 250358)

摘要:为探究黄河流域土壤侵蚀及其驱动因素的时空特征,本研究采用修正通用土壤流失方程 (RUSLE)、热点分析和地理探测器模型,对黄河流域土壤侵蚀及其驱动因素展开分析。结果表明: ①2000年、2010年和2020年黄河流域平均土壤侵蚀模数分别为1994、1860和1384 t/(km² • a);②植 被覆盖度为黄河流域土壤侵蚀最重要的控制因素;县域尺度下,各县土壤侵蚀及其驱动因素差异性 特征明显;③2000—2020年,土壤侵蚀驱动因素解释力总体上呈减弱趋势。研究结果可为黄河流 域水土流失精准治理提供参考。

Analysis of soil erosion and its driving factors in the Yellow River Basin from 2000 to 2020

YIN Zuotang, CHANG Jun

(Collage of Geography and Environment, Shandong Normal University, Ji'nan 250358, China) **Abstract**: In order to explore the spatiotemporal features of soil erosion in the Yellow River Basin and the spatiotemporal features of its driving factors, this study used the RUSLE model, hotspot analysis and Geodetector model to conduct soil erosion and driving factors in the Yellow River Basin. The results show that: ① The average soil erosion modulus in the Yellow River Basin in 2000, 2010 and 2020 was 1994, 1860 and 1384 t/(km² • a), respectively. ② The vegetation coverage is the most important factor for soil erosion in the Yellow River Basin. At the county scale, the differences in soil erosion and its driving factors are obvious in each county. ③From 2000 to 2020, the explanatory power of soil erosion driving factors generally show a weakening trend. The research results can provide a reference for the precise control of soil erosion in the Yellow River Basin. Kay words. Yellow River Basin.

Key words: Yellow River Basin; soil erosion; RUSLE; geodetector

土壤侵蚀是指土壤及土壤母质等成分在水、风 力和冻融等外力作用下被破坏、运输和沉积的过程, 这是近年来粮食安全和生态安全的主要威胁^[1,2]。 因此,探索土壤侵蚀和驱动因素的时空特征,并采取 有效措施保护土壤资源和修复生态环境至关重 要^[3,4]。当前,越来越多的研究开始关注土壤侵蚀 的空间异质性和尺度效应,如考虑行政边界变化对 土壤侵蚀影响因素造成的不确定性,以便将研究结 果应用于水土保持规划与治理^[1,3,5,6]。如 Guo 等^[3] 分析了城市尺度、县级尺度与乡镇尺度上的京津冀 地区土壤侵蚀空间分布特征与主要控制因素的变化 情况;Liu 等^[6]分析了县级尺度下,珠江三角洲水土保 持与城市化水平、平均高程和归一化植被指数(NDVI) 地理加权回归系数的空间分布。这些研究提出了更有

收稿日期: 2022-05-28; 网络首发日期: 2022-12-13

网络首发地址: https://kns. cnki. net/kcms/detail//61.1294. n. 20221213.1436.004. html 基金项目:国家社会科学基金资助项目(18BJY086);山东省自然科学基金资助项目(ZR2012DM009) 第一作者:尹作堂,男,硕士生,研究方向为土壤侵蚀模型与水土保持。E-mail: yinzuotang@163. com 通信作者:常军,男,副教授,硕导,研究方向为遥感与 GIS 应用。E-mail: changj@163. com

针对性的水土保持治理与土地利用政策。

基于修正通用土壤流失方程(RUSLE)^[7]进行 土壤侵蚀分析是当前常用的研究方法之一。在中 国,RUSLE模型已在青藏高原^[8,9]、黄土高原^[10-13]、 喀斯特地貌[14,15]和其他地区[16-18]得到了广泛应用, 并取得了良好的评估效果。地理探测器是探测地理 现象空间分异性,揭示地理现象与因变量关系的一 种空间统计学方法[19],因其能够量化不同驱动因素 及其交互作用对土壤侵蚀的实质性贡献,在最近几 年被广泛应用于土壤侵蚀驱动因素的研究[3-5,15,20]。 但相关学者在使用地理探测器进行土壤侵蚀驱动因 素分析时,主要依靠王劲峰等[19]提出的方法及先验 经验进行人为设定,忽视了数据离散化方法与分类 数可能会对探测结果造成的影响[21,22],故本研究选 用参数最优地理探测器(optimal parameters-based geographical detector, OPGD)^[22]对数据离散方法 与间断数量进行最优化设置,以提高地理探测精度。

作为土壤侵蚀最严重的区域之一,1990—2015 年黄河年均土壤流失量 2.0×10⁹ t^[23],造成土地资 源退化、土壤养分流失、河道淤积,给黄河流域的生 态保护和高质量发展造成巨大阻力。近年来,大量 学者对黄河流域及相关地区开展了土壤侵蚀及其驱 动因素分析^[4,23-25],但关于黄河流域土壤侵蚀驱动 因素的空间分布还有待深入研究。鉴于此,本文基 于 RUSLE 模型与热点分析,探讨 2000 年、2010 年 和 2020 年黄河流域及县域尺度下的土壤侵蚀状况, 并基于参数最优地理探测器评估黄河流域与县域尺 度下的土壤侵蚀驱动因素的解释力,分析县域尺度 下土壤侵蚀驱动因素的时空分布,以期为黄河流域 水土保持及高质量发展提供有效建议。

1 研究区概况、方法及数据

1.1 研究区

黄河流域地处 95°02′ E ~ 119°43′ E,31°28′N~ 41°33′ N之间,整体地势西高东低,流域内海拔高差 达 6 200 m,地形起伏差异明显,自西向东形成横跨 青藏高原、河套平原、鄂尔多斯高原、黄土高原和黄 淮海平原的三级阶梯(图 1)。区域内气候差异明 显,季节差异大,且降水时空分布不均,夏季降水量 约占总降水量的 70%,气温日较差和年较差较大;土 壤包括高山土、干旱土、半淋溶土等多种类型,自然植被包括高寒草甸、草原、落叶林等。流域内地理特征复杂, 土壤侵蚀以水力侵蚀营力为主,同时存在风力、冻融和重 力等侵蚀营力^[26]。近年来,黄河流域因水资源短缺、生 态脆弱和水沙关系不协调等问题受到广泛关注。

 Fig. 1
 Overview map of the study area

 注:此图基于国家自然资源部标准地图服务网站审图号

 为GS2020(4619)的标准地图制作,底图无修改。

1.2 研究方法

1.2.1 修正通用土壤流失方程

修正通用土壤流失方程(RUSLE)为:

$$A = R \cdot K \cdot LS \cdot C \cdot P \tag{1}$$

式中:A 为年土壤侵蚀模数(t/(hm² • a));R 为降雨 侵蚀力((MJ • mm)/(hm² • h • a));K 为土壤可蚀 性因子((t • h)/(MJ • mm));LS 为坡度因子 S 与 坡长因子L(无量纲);C 为地表植被覆盖管理因子 (无量纲);P 为水土保持措施因子(无量纲)。

其中,基于章文波等^[27]提出的日雨量估算侵蚀 力方法,计算流域各气象站点年降雨侵蚀力,通过 Kriging 空间插值处理,得到 2000 年、2010 年和 2020 年黄河流域降雨侵蚀力因子;基于泛第三极 (20 国)土壤可蚀性因子(K)数据集^[28],并在陈同 德^[26]、李天宏^[29]、张科利^[30,31]等人研究基础上做出 修正,K因子取值范围为 0.017 2~0.086 9 (t・ h)/(MJ・mm);基于泛第三极(20 国)坡度坡长因 子(LS)数据集^[32]提取黄河流域 LS 因子数据集, LS 因子取值范围为 0~75.59;C 因子以蔡崇法 等^[33]提出的基于植被覆盖度的 C 因子估算方法进 行估算;基于 RS 与 GIS 提取法,参考文献[4]、[23]、 [34]并结合研究区实际情况,根据土地利用类型 (LUCC)数据与坡度数据对 P 因子进行赋值(表 1)。

表1 不同土地利用类型的 P 值

Tab. 1 P values of different land use	e types
---------------------------------------	---------

LUCC	水田	旱地<15°	旱地 15°~25°	旱地>25°	有林地	灌木林	疏林地	其他园林	草地	水域	住宅用地
P 值	0.1	0.45	0.65	0.85	1	1	1	0.7	1	0	0

1.2.2 热点分析

热点分析是一种空间自相关方法,可用于识别 土壤侵蚀在空间上的高值(热点)与低值(冷点)的聚 类情况^[35]。基于 ArcGIS Pro 热点分析(Getis-Ord *G*_i*)工具,统计识别具有统计显著性的土壤侵蚀热 点与冷点,计算公式为:

$$G_i^*(d) = \left[\sum_{j=1}^n \boldsymbol{W}_{ij}(d) X_j\right] / \sum_{j=1}^n X_j \qquad (2)$$

$$Z(G_i^*) = \left[G_i^* - E(G_i^*)\right] / \sqrt{Var(G_i^*)} \quad (3)$$

式中: G_i^* 为空间关联指数; $E(G_i^*)$ 为 $G_i^*(d)$ 的期望 值; $Var(G_i^*)$ 为变异系数; $W_{ij}(d)$ 为空间权重矩阵; X_j 为第 j级土壤侵蚀强度等级的面积;n为土壤侵蚀强度 等级数; $Z(G_i^*)$ 为 G_i^* 的标准化Z值。标准化Z值为 正且值大,表示土壤侵蚀高值的空间聚类(热点),Z值 为负且值小,则表示土壤侵蚀低值的空间聚类(冷点)。 1.2.3 参数最优地理探测器(OPGD)

地理探测器是探测驱动因素的一种统计学方法,包括分异及因子探测、交互作用探测、风险区探测与生态探测^[19]。本研究使用参数最优地理探测器 R 语言程序包 GD^[22]来分析单个因子与因子交互作用对土壤侵蚀的解释力,其中探测结果 q 值表征解释力的大小。具体设置如下:以土壤侵蚀模数作为因变量,以LUCC(X_1)、地貌类型(X_2)、土壤类型(X_3)、年平均降雨量(X_4)、坡度(X_5)、海拔(X_6)、植被覆盖度(X_7)、人口密度(X_8)为驱动因素,选用五种连续变量离散化算法(自然断点法、标准差法、分位数法、等间隔法和几何间隔法),间断数量设置为 3~8 类,进行土壤侵蚀驱动因素分析。

1.3 数据来源

主要数据来源:①黄河流域矢量面数据、地貌类 型数据(1 km×1 km)、土壤类型数据(1 km×1 km) 和土地利用类型数据(1 km×1 km)来源于中国科 学院资源环境科学与数据中心(https://www.resdc.cn/);②ASTER GDEM 数据(30 m×30 m)来 源于中国科学院地理空间数据云平台(http:// www.gscloud.cn/);③日降雨资料(站点数:113)来 源于中国气象数据网(https://data.cma.cn/);④ NDVI数据(250 m×250 m)是在美国国家航空航天 局提供的 MOD13Q1 数据产品基础上,采用最大值 合成法生成;⑤人口密度数据(1 km×1 km)来源于 WorldPop project 官方网站(https://www.worldpop.org/)。其中栅格数据在经过精度分析、纠偏等 处理后,重采样为1 km分辨率。

2 结果分析

2.1 土壤侵蚀特征分析

依据水利部颁布的《土壤侵蚀分类分级标准》 (SL 190—2007)^[36],将土壤侵蚀强度分为微度 (0~1000 t/(hm² • a))、轻度(1000~2500 t/ (hm² • a))、中度(2500~5000 t/(hm² • a))、强 烈(5000~8000 t/(hm² • a))、极强烈(8000~ 15000 t/(hm² • a))和剧烈(>15000 t/(hm² • a))六 个级别。图 2 中(a)~(c)分别 2000 年、2010 年和 2020 年黄河流域以栅格像元为单元划分的土壤侵蚀强度 图,图 2 中(d)~(f)分别为 2000 年、2010 年和 2020 年 黄河流域以县域为单元划分的土壤侵蚀强度图。

图 2 土壤侵蚀强度图

Fig. 2 Map of soil erosion intensity

注:此图基于国家自然资源部标准地图服务网站审图号为 GS2020(4619)的标准地图制作,底图无修改。

2000—2020年,黄河流域土壤侵蚀状况总体呈现 好转趋势,土壤侵蚀强度减弱区域约1.9×10⁵km², 占流域总面积的24%,土壤侵蚀强度增强区域约 6.5×10^4 km²,占流域总面积的8%。2000年、2010 年和2020年,黄河流域平均土壤侵蚀模数分别为 1994、1860和1384t/(km²•a),水土流失面积分别为 2.80×10⁵、2.62×10⁵和2.14×10⁵km²。侵蚀强度较高 的区域集中于黄土高原地区,并且呈现东北—西南的 条带状走向。但在此期间,河套平原北部的阴山山脉 地区,土壤侵蚀强度具有显著的增强趋势。

由图 2(d)~(f)可知,县域尺度下不同区县土 壤侵蚀的空间差异性明显。2000年,土壤侵蚀强度 呈现极强烈的具分别为陕西省子洲具、子长具、延川 县、清涧县、延长县,山西省石楼县和甘肃省会宁县,各 县平均土壤侵蚀模数分别为 8 572、10 160、10 812、 11 449、9 502、9 056 和 8 651 $t/(hm^2 \cdot a)$;2010 年, 土壤侵蚀强度呈现极强烈的县为甘肃省白银区、平 川区、甘谷县、环县和庆城县,各县平均土壤侵蚀模数 分别为 8 907、8 622、9 104、9 873 和 8 045 t/(hm² • a): 2020年,土壤侵蚀强度呈现极强烈的县为宁夏回族 自治区大武口区、惠农区和内蒙古自治区乌拉特后 旗(流域内部分区域),平均土壤侵蚀模数分别为 14 575、8 329 和 13 288 t/(hm² • a)。县域尺度下, 土壤侵蚀热点分析结果(图 3)与土壤侵蚀强度呈现 相似的时空特征,侵蚀聚集于黄土高原地区,宁夏回 族自治区大武口区、惠农区和内蒙古自治区乌拉特 后旗逐渐成为新的侵蚀聚集中心。

2.2 侵蚀驱动因素分析

土壤侵蚀受自然因素(降水、坡度、土壤类型等) 和人类活动(LUCC、人口密度、植被覆盖度)的共同 影响,因此确定自然因素与人类活动对土壤侵蚀的 解释力对制定后续的水土保持措施尤为重要。黄河 流域土壤侵蚀驱动因素地理探测结果如图4所示。

总体来说,各因子对土壤侵蚀的解释力均有限, 其中植被覆盖度因子对流域土壤侵蚀的解释力最强 (2000 年 q 值最大,为 0.160 5),海拔、土壤类型与 年平均降雨次之,另外,两个人为因素(LUCC 和人 口密度)的解释力均很有限。因子交互作用对土壤 侵蚀的解释力略强于单一因子,但最多也仅在 2000 年坡度与植被覆盖度交互作用时,解释了约 32%的 土壤侵蚀。植被覆盖度作为主要的控制因素,与其 他因素交互作用时 q 值相对较大。在时间上,土壤 侵蚀因子探测的结果总体呈减小趋势,植被覆盖度 q 值从 0.160 5 减小至 0.125 5,人口密度 q 值从 0.096 9 减小至 0.009 9,LUCC 的 q 值从 0.064 5 减小 至 0.047 0。因子交互作用探测的结果变化趋势相似, 但植被覆盖度与地貌类型交互时的 q 值呈增加趋势, 植被覆盖度与 LUCC 交互时的 q 值呈先增加后减少的 趋势。驱动因素的变化趋势表明,黄河流域土壤侵蚀 状况在好转的同时,驱动机理变得更加复杂。

在县域尺度下,对各县土壤侵蚀驱动因素因子 探测 q 值求平均,结果如表 2 所示。在以县域为单 元划分黄河流域进行土壤侵蚀驱动因素分析后,土 壤侵蚀的驱动机理更加明显,平均 q 值大大超过以 流域为单元开展因子探测的 q 值,且 LUCC 这一人 为因素成为第二重要的驱动因素。这表明在一定程 度内,自然因素对土壤侵蚀的影响能力随尺度减小 而逐渐减小,而人为因素对土壤侵蚀的影响随尺度 减小而增大,人为因素在局部区域发挥了更大作用。 这一发现与 Guo 等^[3]、Li 等^[5]的结论相似。

 X_7 X 0.0768 X, 0.0641 X 0.0581 X 0.0470 X_2 0.0210 X 0.0147 X₈ 0.0099 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 *q*值 (c) 2020年黄河流域因子探测q值 *q*值 0.261 00 X 0.1534 0.213 20 X_{ϵ} .2153 0.0919 0.0861 0.2607 0.0224 X, 0.165 40 0.1718 0.1438 0.1596 0.0833 X_4 0.117 60 0.1188 0.1029 0.1160 0.1771 0.0713 X, 0.1029 0.1941 0.0376 0.0951 0.2541 0.0327 X, 0.069.80 .0661 0.1284 0.1277 .0593 0.1584 0.2590 0.0584 X_1 0.022.00 X_{2} X₃ $X_4 = X_5$ $X_6 \quad X_7 \quad X_8$ (f) 2020年黄河流域因子交互作用探测q值

Map of geographical exploration results in the Yellow River Basin Fig. 4

*q*值

.300 00

0.254 00

0.208 00

0.162 00

0.116 00

0 070 00

表 2 因子探测结果平均值

Tab. 2 Average value of the factor detection results

因素	平均 q 值					
	2000年	2010年	2020年			
X_1	0.200 8	0.1817	0.163 0			
X_2	0.206 2	0.177 8	0.156 6			
X_3	0.143 1	0.130 7	0.118 7			
X_4	0.169 5	0.156 6	0.132 6			
X_5	0.084 9	0.071 3	0.068 8			
X_6	0.190 5	0.1687	0.146 3			
X_7	0.212 3	0.197 6	0.299 8			
X_8	0.123 9	0.110 8	0.096 4			

县域尺度下,各县土壤侵蚀驱动因素因子探测 结果表明(图 5 中,空值主要因地理探测结果中的 sig 大于 0.05, 无法通过显著性检验造成), 黄河流 域各县土壤侵蚀驱动因素的空间分异明显,但总体 上无明显分布规律。在空间上,LUCC、地貌类型、 土壤类型、降水、海拔和坡度在宁夏回族自治区北部 部分区县(平罗县、贺兰县、西夏县等)对土壤侵蚀的 解释力较强;地貌类型与海拔在内蒙古自治区部分 区县(土默特右旗、土默特左旗、东河区和赛罕区)与 山西省部分区县(离石区、中阳县和汾阳市等)对土 壤侵蚀的解释力较强:人口密度在绝大多数区县对 土壤侵蚀的解释力有限。此外,植被覆盖度与其他 因素相比,展现出不同的空间分布格局,其在山西 省、陕西省和甘肃省对土壤侵蚀的解释力较强,而这 些区县的土壤侵蚀强度减弱最为明显,表明植被恢 复能有效减少土壤侵蚀。

除植被覆盖度外,其他因素的q值在时间上总 体呈现减小趋势,这与流域土壤侵蚀驱动因素的时 间变化特征相似。为探究植被覆盖度因子 q 值增强 的原因,将植被覆盖度因子探测结果与植被覆盖度 数据进行叠加分析,发现 2000-2020 年,黄河流域 植被覆盖度从49%上升至59%,而植被覆盖度因子 在植被覆盖度较高的区县对土壤侵蚀的解释力更 强。又因在 RUSLE 模型中,当植被覆盖度大于 78.3%时C因子被赋值为0,说明当研究区植被覆 盖度高于特定值时,植被控制土壤侵蚀的益处趋于 稳定,这与 Teng 等^[37]的研究结论相似。

为进一步探究新的侵蚀聚集中心形成的驱动因 素,对宁夏回族自治区大武口区、惠农区和内蒙古自 治区乌拉特后旗三个区域的因子探测结果进行分 析。由表 3 可知, 2020 年, 新的侵蚀热点的形成主 要受坡度、地貌类型和 LUCC 影响。分析 LUCC、 地貌与遥感影像数据可知,三个区域的 LUCC 类型 均以草地为主,大武口区与惠农区地处贺兰山丘陵 地区,乌拉特后旗地处阴山山脉区域,均为土壤侵蚀 易发区,加之人类活动的影响,极易造成土壤侵蚀的 发生。Li 等^[4]的研究发现,黄河上游净土壤侵蚀速 率的空间格局主要由坡度控制,这也从一定程度上 印证了所得结论。

Fig. 5 Map of factor detection results for each county

注:此图基于国家自然资源部标准地图服务网站审图号为 GS2020(4619)的标准地图制作,底图无修改。

Tab. 3 Factor detection results of Dawukou, Huinong and Urad Rear Banner									
					q值				
因素	因素 大武口区		惠农区			乌拉特后旗			
	2000年	2010年	2020年	2000 年	2010年	2020年	2000年	2010 年	2020年
X_1	0.305 2	0.308 6	0.4654	0.458 4	0.395 2	0.4467	0.3204	0.311 3	0.305 8
X_2	0.339 0	0.2937	0.338 8	0.544 4	0.439 8	0.506 1	0.136 9	0.147 7	0.183 5
$X_{\scriptscriptstyle 3}$	0.293 8	0.281 8	0.336 0	0.389 5	0.346 9	0.412 7	0.086 6	0.087 2	0.099 0
X_4	0.325 9	0.306 1	0.314 0	0.486 0	0.395 4	0.402 9	0.035 6	0.033 0	0.080 0
X_5	0.232 8	0.228 5	0.267 4	0.400 9	0.324 0	0.385 4	0.081 9	0.094 6	0.115 3
X_6	0.3437	0.3214	0.332 2	0.4711	0.410 8	0.450 8	0.033 9	0.034 4	0.039 5
X_7	0.256 0	0.266 0	0.290 3	0.219 6	0.223 3	0.322 0	0.023 2	0.044 1	0.018 9
X_8	0.203 6	0.260 3	0.303 4	0.230 1	0.239 2	0.275 9	0.038 4	0.035 1	0.024 9

表 3 大武口区、惠农区和乌拉特后旗因子探测结果

3 讨 论

由于不同学者采用的数据源不同,而且 RU-SLE模型的因子计算方法也不尽相同,因此,各文 献对黄河流域或相关区域土壤侵蚀模数的估算也存 在较大差异。此外,考虑到黄河流域土壤侵蚀情况 较为复杂,从水利部《中国河流泥沙公报》仅能获知 黄河部分水文站点的输沙模数,而在泥沙输移比未 知时无法估算侵蚀模数,故对比了当前研究与其他 研究来验证本文结果的准确性(表 4)。当前研究结 果与其他研究结果具有较好的线性拟合(*R*² = 0.96),但模型精度仍有待进一步提高。

表 4	其他研究的土壤侵蚀模数

Tab. 4 Soil erosion modulus obtained from previous studies

区域	左瓜	土壤侵蚀模数/(土壤侵蚀模数/(t・(km ² ・a) ⁻¹)			
	千仞	其他研究	当前研究	米源		
延河流域	2010	3 227	2 818	Zhao 等 ^[38]		
湟水	2000	1 183	846	陈朝良等[39]		
黄土高原	2000—2010	1 520	2 508	Sun 等 ^[40]		
洮河	2000	1 424	940	XX7 /2/[41]		
	2010	1 129	686	Wang 守 ^[11]		
北洛河	2000	7 408.93	6 618	Yan 等 ^[42]		
黄土高原	2010	3 355	2 376	Gao 等 ^[43]		

综上,黄河流域土壤侵蚀时空特征明显,水土流 失严重的区域主要位于黄土高原地区,流域土壤侵 蚀状况有所好转,但近年来阴山山脉与贺兰山区的 水土流失较为严重。各因子对黄河流域土壤侵蚀的 解释力均有限,植被覆盖度始终是黄河流域土壤侵 蚀的重要控制因素,该结论与周璐红^[44]、贾磊^[45]等 人的分析结果一致。黄河流域各县土壤侵蚀驱动因 素的空间分异明显,但空间分布规律不显著。

不同季节的土壤侵蚀及其主要控制因素不同,Li 等^[4]研究发现,黄河上游 6~8月土壤水蚀最为强烈, 且 NDVI 在夏季对土壤侵蚀的解释力更强,降水在春 秋季节、河源地区对土壤侵蚀的解释力更强。在后期 研究中,还应探讨不同季节、不同地貌特征(梯田等) 下的黄河流域土壤侵蚀及驱动因素的时空变化,以期 为黄河流域水土保持精细化管理提供帮助。

4 结 论

1) 2000 年、2010 年和 2020 年黄河流域平均土壤 侵蚀模数分别为1 994、1 860 和1 384 t/(km² • a),侵 蚀热点呈东北一西南走向,并呈带状集中于黄土高 原地区。在坡度、地貌类型与 LUCC 的影响下,阴 山西部与贺兰山区逐渐成为新的侵蚀热点区域。

2) 植被覆盖度为黄河流域土壤侵蚀最重要的 控制因素。在县域尺度下,LUCC成为仅次于植被 覆盖度的影响因素,人为因素在局部区域发挥了更 大作用。各县土壤侵蚀驱动因素差异性特征明显, 但除植被覆盖度在高植被覆盖区域解释力较强外, 其他驱动因素无明显空间分布特征。 3) 2000—2020 年,黄河流域土壤侵蚀状况好转,但侵蚀驱动因素的解释力呈现减弱趋势,土壤侵蚀驱动机理更加复杂。

参考文献:

- [1] BORRELLI P, ROBINSON D A, FLEISCHER L R, et al. An assessment of the global impact of 21st century land use change on soil erosion [J]. Nature Communications, 2017, 8(1): 2013.
- [2] WUEPPER D, BORRELLI P, FINGER R. Countries and the global rate of soil erosion [J]. Nature Sustainability, 2020, 3(1): 51-55.
- [3] GUO L, LIU R, MEN C, et al. Multiscale spatiotemporal characteristics of landscape patterns, hotspots, and influencing factors for soil erosion [J]. Science of the Total Environment, 2021, 779: 146474.
- [4] LI H, GUAN Q, SUN Y, et al. Spatiotemporal analysis of the quantitative attribution of soil water erosion in the upper reaches of the Yellow River Basin based on the RUSLE-TLSD model [J]. CATENA, 2022, 212: 106081.
- [5] LI Q, ZHOU Y, WANG L, et al. The link between landscape characteristics and soil losses rates over a range of spatiotemporal scales: Hubei Province, China
 [J]. International Journal of Environmental Research and Public Health, 2021, 18(21): 11044.
- [6] LIU W, ZHAN J, ZHAO F, et al. Spatio-temporal variations of ecosystem services and their drivers in the Pearl River Delta, China [J]. Journal of Cleaner Production, 2022, 337: 130466.
- [7] RENARD K G, FOSTER G R, WEESIES G A, et al. Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE) [M]. Washington, D. C. : USDA Publications, 1997.
- [8] WANG L, ZHANG F, FU S H, et al. Assessment of soil erosion risk and its response to climate change in the mid-Yarlung Tsangpo River region [J]. Environ Sci Pollut Res, 2020, 27(1): 607-621.
- [9] TENG H F, LIANG Z Z, CHEN S C, et al. Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models [J]. Science of the Total Environment, 2018, 635: 673-686.
- [10] GUO X J, SHAO Q Q. Spatial pattern of soil erosion drivers and the contribution rate of human activities on the Loess Plateau from 2000 to 2015: a boundary line from northeast to southwest [J]. Remote Sensing, 2019, 11(20): 2429.
- [11] ZHAO G J, GAO P, TIAN P, et al. Assessing sediment connectivity and soil erosion by water in a representative catchment on the Loess Plateau, China [J]. CATENA, 2020, 185: 104284.
- [12] YU S C, WANG F, QU M, et al. The effect of land use/cover change on soil erosion change by spatial re-

gression in Changwu County on the Loess Plateau in China [J]. Forests, 2021, 12(9): 1209.

- [13] XIA L, BI R T, SONG X Y, et al. Dynamic changes in soil erosion risk and its driving mechanism: a case study in the Loess Plateau of China [J]. European Journal of Soil Science, 2021, 72(3): 1312-1331.
- [14] ZHU D Y, XIONG K N, XIAO H. Multi-time scale variability of rainfall erosivity and erosivity density in the karst region of southern China, 1960 - 2017 [J]. CATENA, 2021, 197(1): 104977.
- [15] 王欢,高江波,侯文娟. 基于地理探测器的喀斯特不同地貌形态类型区土壤侵蚀定量归因[J]. 地理学报,2018,73(9):1674-1686.
 WANG Huan, GAO Jiangbo, HOU Wenjuan. Quantitative attribution analysis of soil erosion in different morphological types of geomorphology in karst areas: based on the geographical detector method[J]. Acta Geographica Sinica, 2018, 73(9):1674-1686.
- [16] LI Q, ZHOU Y, WANG L, et al. The link between landscape characteristics and soil losses rates over a range of spatiotemporal scales: Hubei Province, China
 [J]. International Journal of Environmental Research and Public Health, 2021, 18(21): 11044.
- [17] GUO L J, LIU R M, MEN C, et al. Multiscale spatiotemporal characteristics of landscape patterns, hotspots, and influencing factors for soil erosion [J]. Science of the Total Environment, 2021, 779: 146474.
- [18] LIANG S Z X, FANG H Y. Quantitative analysis of driving factors in soil erosion using geographic detectors in Qiantang River catchment, Southeast China [J]. Journal of Soils and Sediments, 2021, 21(1): 134-147.
- [19] 王劲峰,徐成东.地理探测器:原理与展望[J].地理 学报,2017,72(1):116-134.
 WANG Jinfeng, XU Chengdong. Geodetector: principle and prospective [J]. Acta Geographica Sinica, 2017,72(1):116-134.
- [20] YIN Z, CHANG J, HUANG Y. Multiscale spatiotemporal characteristics of soil erosion and its influencing factors in the Yellow River Basin [J]. Water, 2022, 14(17): 2658.
- [21] MENG X Y, GAO X, LEI J Q, et al. Development of a multiscale discretization method for the geographical detector model [J]. International Journal of Geographical Information Science, 2021, 35(8): 1650-1675.
- [22] SONG Y Z, WANG J F, GE Y, et al. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: cases with different types of spatial data [J]. Giscience & Remote Sensing, 2020, 57(5): 593-610.
- [23] XIAO Y, GUO B, LU Y, et al. Spatial-temporal evolution patterns of soil erosion in the Yellow River Basin from 1990 to 2015: impacts of natural factors and land use change [J]. Geomatics Natural Hazards & Risk,

2021, 12(1): 103-122.

- [24] REN Z, TIAN Z, WEI H, et al. Spatiotemporal evolution and driving mechanisms of vegetation in the Yellow River Basin, China during 2000—2020 [J]. Ecological Indicators, 2022, 138: 108832.
- [25] WU H, GUO B, XUE H, et al. What are the dominant influencing factors on the soil erosion evolution process in the Yellow River Basin? [J]. Earth Science Informatics, 2021, 14(4): 1899-1915.
- [26] 陈同德, 焦菊英, 王颢霖, 等. 青藏高原土壤侵蚀研究进展[J]. 土壤学报, 2020, 57(3): 547-564.
 CHEN Tongde, JIAO Juying, WANG Haolin, et al. Progress in research on soil erosion in Qinghai-Tibet Plateau[J]. Acta Pedologica Sinica, 2020, 57(3):547-564.
- [27] 章文波,付金生.不同类型雨量资料估算降雨侵蚀力
 [J].资源科学,2003,25(1):35-41.
 ZHANG Wenbo, FU Jinsheng. Estimation of rainfall erosivity from different types of rainfall data [J]. Resources Science, 2003, 25(1):(1): 35-41.
- [28] 杨勤科. 泛第三极(20国)土壤可蚀性因子(K)数据集 (2020年,7.5弧秒分辨率)[EB/OL]. https://data.tpdc. ac.cn/en/data/926339e3-2e27-44a2-a829-7623795759fc/.
- [29] 李天宏,郑丽娜. 基于 RUSLE 模型的延河流域 2001—2010 年土壤侵蚀动态变化[J]. 自然资源学报, 2012, 27(7): 1164-1175.
 LI Tianhong, ZHENG Lina. Soil erosion changes in the Yanhe watershed from 2001 to 2010 based on RU-SLE model[J]. Journal of Natural Resources, 2012,

SLE model[J]. Journal of Natural Resources, 2012, 27(7):1164-1175.
[30] 张科利,蔡永明,刘宝元,等. 黄土高原地区土壤可 蚀性及其应用研究[J]. 生态学报, 2001, 21(10):

1687-1695. ZHANG Keli, CAI Yongming, LIU Baoyuan, et al. Evaluation of soil erodibility on the Loess Plateau[J]. Acta Ecologica Sinica, 2001, 21(10):1687-1695.

- [31] 张科利,彭文英,杨红丽.中国土壤可蚀性值及其估算[J].土壤学报,2007,44 (1):7-13.
 ZHANG Keli, PENG Wenying, YANG Hongli. Soil erodibility and its estimation for agricultural soil in China[J]. Acta Pedologica Sinica, 2007, 44(1):7-13.
- [32] 杨勤科. 泛第三极(20国)坡度坡长因子数据集(2020 年,7.5 弧秒分辨率)[EB/OL]. https://data.tpdc.ac. cn/en/data/3551c528-bafd-450f-962f-7abd0505ddc0/.
- [33] 蔡崇法,丁树文,史志华,等.应用 USLE 模型与地 理信息系统 IDRISI 预测小流域土壤侵蚀量的研究
 [J].水土保持学报,2000,14(2):19-24.
 CAI Chongfa, DING Shuwen, SHI Zhihua, et al. Study of applying USLE and geographical information system IDRISI to predict soil erosion in small watershed[J]. Journal of Soil and Water Conservation, 2000, 14(2):19-24.
- [34] 黄杰,姚志宏,查少翔,等. USLE/RUSLE 中水土保 持措施因子研究进展[J]. 中国水土保持,2020(3): 37-39,56.

HUANG Jie, YAO Zhihong, ZHA Shaoxiang, et al. Progress of study on soil and water conservation measures factors in USLE/RUSLE [J]. Soil And Water Conservation In China, 2020(3): 37-39,56.

- [35] GETIS A, ORD J K. The analysis of spatial association by use of distance statistics [J]. Geographical Analysis, 1992, 24(3): 189-206.
- [36] 水利部水土保持司. 土壤侵蚀分类分级标准: SL 190-2007 [S]. 北京: 中国水利水电出版社, 2008.
- [37] TENG M, HUANG C, WANG P, et al. Impacts of forest restoration on soil erosion in the Three Gorges Reservoir area, China [J]. Science of the Total Environment, 2019, 697: 134164.
- [38] ZHAO G, GAO P, TIAN P, et al. Assessing sediment connectivity and soil erosion by water in a representative catchment on the Loess Plateau, China [J]. CATENA, 2020, 185: 104284.
- [39] 陈朝良,赵广举,穆兴民,等.基于 RUSLE 模型的湟 水流域土壤侵蚀时空变化[J].水土保持学报,2021, 35(4):73-79.
 CHEN Chaoliang, ZHAO Guangju, MU Xingmin, et al. Spatial-temporal change of soil erosion in Huang-

al. Spatial-temporal change of soil erosion in Huangshui watershed based on RUSLE model [J]. Journal of Soil and Water Conservation, 2021, 35(4): 73-79.

- [40] SUN W, SHAO Q, LIU J. Soil erosion and its response to the changes of precipitation and vegetation cover on the Loess Plateau [J]. Journal of Geographical Sciences, 2013, 23(6): 1091-1106.
- [41] WANG H, ZHAO H. Dynamic changes of soil erosion in the Taohe River basin using the RUSLE model and Google Earth Engine [J]. Water, 2020, 12(5): 1293.
- [42] YAN R, ZHANG X, YAN S, et al. Estimating soil erosion response to land use/cover change in a catchment of the Loess Plateau, China [J]. International Soil and Water Conservation Research, 2018, 6(1): 13-22.
- [43] GAO H, LI Z, JIA L, et al. Capacity of soil loss control in the Loess Plateau based on soil erosion control degree [J]. Journal of Geographical Sciences, 2016, 26(4): 457-472.
- [44] 周璐红, 王盼婷, 曹瑞超. 2000—2020 年延安市土壤 侵蚀驱动因素分析及生态安全评价[J]. 生态与农村 环境学报, 2022, 38(4): 511-520.
 ZHOU Luhong, WANG Panting, CAO Ruichao. Soil erosion driving factors and ecological security evaluation for Yan'an City from 2000 to 2020 [J]. Journal of Ecology and Rural Environment, 2022, 38 (4): 511-520.
- [45] 贾磊,姚顺波,邓元杰,等. 渭河流域土壤侵蚀时空 特征及其地理探测[J]. 生态与农村环境学报,2021, 37(3):305-314.

```
JIA Lei, YAO Shunbo, DENG Yuanjie, et al. Tem-
poral and spatial characteristics of soil erosion risk in
Weihe River basin and its geographical exploration[J].
Journal of Ecology and Rural Environment, 2021, 37
(3): 305-314.
```

(责任编辑 周 蓓)