
DOI:10.19322/j.cnki.issn.1006-4710.2025.04.005 https://xuebao.xaut.edu.cn
引文格式:高晓明,许文峰,邱浪,任高峰,郑一柳,么学春,徐琛.基于VMD-LSTM的高速公路综合场站碳排放预测研究[J].

西安理工大学学报,2025,41(4):499-508.
GAOXiaoming,XU Wenfeng,QIULang,RENGaofeng,ZHENGYiliu,YAOXuechun,XUChen.Carbonemission

predictionofexpresswayintegratedstationbasedonVMD-LSTM[J].JournalofXi􀆳anUniversityofTechnology,

2025,41(4):499-508.

收稿日期:2024-10-24; 网络首发日期:2025-04-11
网络首发地址:https://link.cnki.net/urlid/61.1294.n.20250410.1706.002
基金项目:中国施工企业管理协会重大科研项目(2023-A-032)
第一作者:高晓明,男,学士,高级工程师,研究方向为高速公路建设管理及建筑碳减排。E-mail:516895748@qq.com
通信作者:徐琛,男,博士,特设副教授,研究方向为隧道施工、机器学习及碳减排路径优化。E-mail:xuchen_office@163.com

基于VMD-LSTM的高速公路综合场站
碳排放预测研究
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(1.中交建筑集团有限公司,北京100022;2.中交建筑集团东南建设有限公司,福建 厦门361000;

3.武汉理工大学 资源与环境工程学院,湖北 武汉430070)

摘要:高速公路综合场站是桥梁及公路建设中能源消耗与碳排放的关键节点。为实现对其碳排放

的精准预测,本文基于长修高速封丘至修武段综合场站146天的能耗监测数据,创新性地构建了变

分模态分解(VMD)联合长短期记忆网络(LSTM)的碳排放预测模型。结果表明:VMD-LSTM 模

型能有效捕捉综合场站碳排放的周期性变化规律,其预测值与实际值的趋势高度吻合;该模型预测

性能优异,准确率(AR)达94.32%,均方误差(MSE)为0.0993,均方根误差(RMSE)为0.3150,
决定系数(R2)为0.9739,显著优于传统LSTM模型。研究结果可为高速公路综合场站精准节能

减碳提供理论指导与技术支撑。
关键词:高速公路综合场站;碳排放;变分模态分解;长短期记忆网络;预测模型
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Abstract:Highwayintegratedstationsarecriticalnodesforenergyconsumptionandcarbonemis-
sionsinbridgeandroadconstruction.Toachievetheaccuratepredictionofitscarbonemission,
thispaperinnovativelyconstructsacarbonemissionpredictionmodelcombiningvariationalmode
decomposition(VMD)andlongshort-term memory(LSTM)networks,basedon146daysof
energyconsumptionmonitoringdatafromtheintegratedstationoftheChangxiuExpressway’s
FengqiutoXiuwusection.TheresultsshowthattheVMD-LSTMmodeleffectivelycapturesthe
periodicvariationpatternsofcarbonemissionsattheintegratedstation,withitspredictedvalues
trendinghighlyconsistentwithactualvaluestrends.Themodeldemonstratesexcellentapredic-
tiveperformance,achievinganaccuracyrate(AR)of94.32%,meansquarederror(MSE)of
0.0993,rootmeansquarederror(RMSE)of0.3150,andcoefficientofdetermination(R2)of
0.9739,significantlyoutperformingthetraditionalLSTMmodel.Theresearchfindingsprovide
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thetheoreticalguidanceandtechnicalsupportforpreciseenergyconservationandcarbonreduc-
tioninhighwayintegratedstations.
Keywords:expresswayintegratedstation;carbonemission;VMD;LSTM;predictionmodel

  交通行业是推动经济发展、保障国家安全和促

进创新环保产业发展的重要产业,同时也是我国的

基础行业和主要碳排放产业之一,促进其行业内达

成“碳达峰、碳中和”对于我国减碳目标的实现具有

举足轻重的作用。国际能源署数据显示,2022年中

国碳排放总量约为121亿吨,其中交通运输领域约

占10.4%,是除了电力、工业外第三大碳排放来源。
高速公路综合场站是对桥梁及公路建设所需原材料

进行初加工的临时场地和运输中枢,是能源消耗和

碳排放的聚集地和高发地。在“双碳”战略背景下,
高速公路综合场站作为交通基建临时性碳排放大

户,因其高能耗、动态波动和短周期的特点,其碳排

放预测面临时空异质性显著、多工序驱动机制复杂

及传统模型适配性差等挑战。开展综合场站碳排放

预测可为未来建设项目的精准碳评估、动态碳管理

以及低碳技术应用提供科学依据,是推动交通建筑

行业绿色转型和实现“双碳”目标的重要技术支撑。
随着人工智能的发展,许多学者开始将机器学

习方法应用于实际工程的数据分析中[1-2]。在碳排

放预测领域,国内外学者已针对机器学习方法的应

用开展了大量研究。胡剑波等[3]基于LSTM模型预

测出我国碳排放强度的变化趋势,并建立ARIMA-BP
神经网络模型作为验证。王火根等[4]采用IO-SDA
法测算了中国不同行业2017—2020年的碳排放量,
并结合预测数据分析了2020—2060年的碳排放变

化趋势及其驱动因素。胡剑波等[5]基于2000—

2020年中国工业行业相关数据,构建了反向传播

(BP)神经网络预测模型,预测了2020—2030年中

国工业的碳排放量。刘淳森等[6]基于可拓展的随机

性环境影响评估(STIRPAT)模型,选取人口、机动

车保有量和能源强度等8个变量作为影响因素,构
建了中 国 交 通 运 输 业 LSTM 碳 排 放 预 测 模 型。

Tang等[7]通过筛选交通运输碳排放的关键影响因

素,提出了一种基于麻雀搜索算法(SSA)的改进

LSTM预测模型。Wu等[8]基于情景分析法和循环

神经网络,构建了 LSTM 碳排放情景预测模型。

Kong等[9]采 用 集 合 经 验 模 态 分 解 (EEMD)和

VMD相结合的二次分解技术对原始数据进行处

理,使用LSTM对碳排放量进行预测。Wang等[10]

使用麻雀搜索算法对LSTM的超参数进行优化,提
出了燃煤电厂SSA-LSTM 碳排放回归预测模型。
池小波等[11]提出了一种分量增广输入的 WPD-ISSA-

CA-CNN碳排放量预测模型。肇晓楠等[12]通过将

滑动窗口与LSTM网络相结合,构建了铁路运输碳

排放量预测模型。鲍学英等[13]运用轻量级梯度提

升机(LightGBM)算法构建了碳排放预测模型,并
通过可解释机器学习模型分析了影响因素对碳排放

的贡献。王庆荣等[14]采用一种融合变分模态分解

(VMD)、麻雀搜索算法(SSA)和最小二乘支持向量

机(LSSVM)的预测模型对交通运输业碳排放量进

行了精准预测。对于较小区域的碳排放预测,也有

学者做了相关研究。胡雨沙等[15]针对制浆造纸过

程中的碳排放预测,提出了一种基于 VMD-BO-
BPNN-QR的区间预测模型。杨历夏等[16]提出了一

种改进麻雀算法优化的BP神经网络模型,该模型通过

小样本数据实现了车削加工碳排放与加工时间的高

精度多目标预测。曾弘锐等[17]基于案例分析,构建

了铁路隧道施工 WOA-BP碳排放预测模型。
综上所述,在碳排放预测领域,学者们通过使用

机器学习模型取得了一定的研究成果,但目前仍存

在以下问题:1)现有研究大多聚焦于较大尺度的碳

排放预测,如全国、省域或某一行业的碳排放预测,
对于较小区域的碳排放预测研究较少;2)部分模型

预测精度有限,误差较大;3)数据集大多来源于统计

与核算,而不是基于现场监测数据。基于以上问题,
本文先根据监测所得高速公路综合场站化石燃料消

耗量与电力消耗量,计算出2024年施工期146天的

每日碳排放总量,而后以此时间序列为数据集,利用

变分模态分解将时间序列数据分解为多个模态分

量,然 后 使 用 每 一 模 态 分 量 的 训 练 集 数 据 训 练

LSTM模型,使用测试集数据进行预测,最后将每

一模态分量的预测结果合并作为最终预测结果。同

时,建立LSTM 模型与之进行对比,以验证 VMD-
LSTM模型的适用性与优越性。

1 项目概况

长修高速封丘至修武段SG-2标段位于新乡市

原阳县、新乡县境内,起点桩号K75+000,终点桩号

K105+000。标段长30km,桥梁总长9.92km,桥
梁比33.07%。综合场站建设在主线桩号K104+100
右侧840m处,占地90068m2,约135亩。综合场站由

混凝土拌合站、沥青搅拌站、水稳拌合站、梁场、钢筋

场、驻地六部分组成(见图1)。该场站建设有排碳耗能

智能动态监测系统。该系统以高速公路综合场站的
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“三站两场一驻地”为监测对象,通过在现场布置电表、
气体计量器、水量计量器等相关设备来监测耗油量、耗
电量、耗水量、碳排放量和水泥等原材料用量。

图1 高速公路综合场站

Fig.1 Expresswayintegratedstation
 

2 研究方法

2.1 变分模态分解原理

变分模态分解[1](variationalmodedecomposi-
tion,VMD)是一种信号处理方法,用于将复杂信号

分解为若干个具有不同频率特征的本征模态函数

(intrinsicmodefunction,IMF)。与传统的经验模

态分解相比,VMD在处理非线性、非平稳信号方面

具有更好的鲁棒性和稳定性。其核心思想是通过变

分框架寻找各个模态,使每个模态的频谱尽可能集

中,从而实现信号的分解。

VMD的目标是将输入信号f(t)分解为 K 个

模态函数 uk t    K
k=1 ,每个模态函数具有中心频率

ω  K
k=1 。具体来说,VMD通过求解以下优化问题

来实现信号的分解:

min{uk},{ωk} ∑
K

k=1
‖∂t δ(t)+j1πt  *uk(t)  e-jωkt‖

2

2  
(1)

式中:δ(t)为狄拉克函数;∂t 为时间导数;j为虚数单

位;e为自然常数;*表示卷积运算。
该优化问题的物理意义是使每个模态函数的频

谱尽可能集中在其中心频率附近。为了求解上述优

化问题,采用拉格朗日乘子法引入约束条件,并使用

交替方向乘子法进行迭代求解。具体步骤如下:

1)构造带有约束条件的拉格朗日函数。
({uk},{ωk},λ)=

α∑
K

k=1
‖∂t δ(t)+j1πt  *uk(t)  e-jωkt‖

2

2
+

‖f(t)-∑
K

k=1
uk(t)‖

2

2+<λ(t),f(t)-∑
K

k=1
uk(t)>

(2)
式中:α为权重参数;λ(t)为拉格朗日乘子;<·>表示

内积运算。

2)对于每个模态函数和中心频率,交替进行以

下步骤直至收敛。
固定 ui  i≠k 和 ωi  i≠k ,更新uk t  :

un+1
k (t)=argminuk

(un
i  i≠k,uk,{ωn

i},λn)

(3)
固定 un+1

i  和 ωi  i≠k ,更新ωk:

ωn+1
k =argminωk

({un+1
i },ωk,λn) (4)

更新拉格朗日乘子λ(t):

λn+1(t)=λn(t)+τf(t)-∑
K

k=1
un+1

k (t)  (5)

2.2 LSTM 原理

长短 期 记 忆 网 络(longshort-term memory,

LSTM)是一种特殊的循环神经网络[18],其通过门

控机制有效解决了传统循环神经网络的长期依赖问

题。LSTM通过引入门控机制来控制信息的流动,
从而能够学习到长期序列中的依赖关系。LSTM
的核心是一个细胞状态,它像一条输送带,信息可以

被添加、移除或不变地传递下去。这些操作由遗忘

门、输入门、输出门控制。遗忘门决定了哪些信息从

细胞状态中丢弃。输入门有两个功能,一是决定哪些

新信息存储到细胞状态中,二是负责创建新候选值。
输出门决定了哪部分的细胞状态被输出为当前时间步

的隐藏状态。LSTM的网络结构如图2所示。

图2 LSTM网络结构

Fig.2 LSTMnetworkstructure
 

假设序列xt 表示时间步t 的输入向量,ht 是

LSTM在时间步t的输出,ct 是细胞状态,则每个门

和细胞状态的更新过程如下。

1)遗忘门赋予 LSTM 精细化的记忆管理能

力,使其能自适应地平衡长期记忆与短期输入的关

联性。遗忘门的输出是一个介于0到1之间的值,0
表示完全删除,1表示完全保留。

ft =σ(Wf[ht-1,xt]+bf) (6)
式中:Wf为权重矩阵;bf为偏置项;σ为激活函数。

2)输入门由输入门控制与候选细胞状态组成,
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前者用于决定哪些新信息将存储到细胞状态中,后
者则负责创建新候选值。

it =σ(Wi[ht-1,xt]+bi) (7)

c~t =tanh(Wc[ht-1,xt]+bc) (8)
式中:Wi 和Wc 分别为输入门控制和候选细胞状态

的权重矩阵;bi和bc为对应的偏置项。

3)细胞状态根据遗忘门和输入门的结果进行

更新。

ct =ft·ct-1+it·c
~
t (9)

4)输出门决定了哪部分的细胞状态将被输出。

ot =σ(Wo[ht-1,xt]+bo) (10)
式中:Wo 和bo 分别为输出门的权重矩阵和偏置项。

5)最终的隐藏状态ht 是细胞状态经过激活后

的结果,然后乘以输出门的输出。

ht =ot·tanh(ct) (11)

2.3 评估指标选取

本文选用准确率(AR)、均方误差(MSE)、均方

根误差(RMSE)、决定系数(R2)4项评价指标来评

估模型的预测性能。其中,AR反映了预测的精确

程度;MSE表示预测值与真实值之间差异的平方平

均值;RMSE是MSE的平方根;R2 则衡量了模型解

释变量变异性的比例,反映了模型的拟合优度。其

计算公式为:

RAR = 1n∑
n

i=1
1-|yi-̂yi|

yi  (12)

RMSE = 1n∑
n

i=1

(yi-̂yi)2 (13)

RRMSE = 1
n∑

n

i=1

(yi-̂yi)2 (14)

R2 =1-
∑
n

i=1

(yi-̂yi)2

∑
n

i=1

(yi-y
-)2

(15)

式中:yi 、̂yi、y
- 分别为实际值、预测值、实际值均

值;n为测试样本数量。
各指标的取值范围及数值含义如表1所示。

表1 评价指标取值范围

Tab.1 Rangeofvaluesforevaluationmetrics

评价指标 取值范围 数值含义

RAR [0,1] 越接近1预测效果越好

RMSE [0,+∞] 越小预测效果越好

RRMSE [0,+∞] 越小预测效果越好

R2 [-∞,1] 越接近1预测效果越好

2.4 碳排放量核算

2.4.1 核算方法

依据政府间气候变化专门委员会(IPCC)提供

的国家温室气体清单指南,本文采用排放因子法来

计算高速公路综合场站各阶段的碳排放量。排放因

子法是IPCC提出的一种碳排放量估算方法,它依

照碳排放清单列表,针对每一种排放源构造活动数

据与排放因子,以投入的能源使用量和排放因子的

乘积作为该排放项目的碳排放量估算值:

GHG =AD×EF (16)
式中:GHG为二氧化碳排放量;AD是导致温室气体排

放的生产或消费活动的活动量,如每种化石燃料的

消耗量、石灰石原料的消耗量、净购入的电量、净购

入的蒸汽量等;EF为单位生产或消费活动量的温室

气体排放系数,包括单位热值含碳量或元素碳含量、
氧化率等。EF既可以直接采用IPCC、美国环境保

护署、欧洲环境机构等提供的已知数据,也可以基于

代表性测量数据来推算。

2.4.2 核算边界

综合场站主要由混凝土拌合站、沥青搅拌站、水
稳拌合站、梁场、钢筋场、驻地6个部分组成。图3
为综合场站碳排放来源。

水稳拌合站专门用来拌合水稳料,水稳料一般

包括水泥、粉煤灰、级配碎石和稳定土层料等。沥青

拌合站专门用来拌合沥青熟料,主要拌合沥青(分为

改性沥青、90#沥青等)、机制砂、碎石、河沙、聚酯纤

维、钢纤维和质纤维等原料组成的沥青稳定土。混

凝土拌合站专门用来制作、搅拌混凝土料,它主要拌

合附剂、沙、水泥和膨润土等。拌合站设备主要消耗

电能,罐车、装载机和卡车等消耗柴油。梁场是生产

桥梁预制混凝土简支梁的地方,简支梁生产完毕后,
用运梁机和架梁机运输架设到施工场地上,预制梁

生产涉及多种生产工艺和多套施工设备,是高速公

路综合场站生产的主体部分,其生产设备主要消耗

电能,移梁台车等运梁设备则消耗柴油。钢筋场承

担钢筋的加工任务,施工时尽量集中加工钢筋,加工

好的钢筋采用集中配送的方式,直接输送至各施工

点,以减少二次搬运量。驻地是为了方便场站施工

人员开展工作、生活而建设的区域,主要包括试验

室、办公楼和生活区等。

2.4.3 核算模型

化石燃料燃烧是综合场站重要的碳排放来源,
本文主要考虑罐车、装载机、卡车等车辆运输物料所

产生的碳排放量,具体测算公式为:

Efue=Dfue×Ffue (17)
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图3 碳排放来源

Fig.3 Carbonemissionsources
 

式中:Efue为综合场站核算年度内化石燃料燃烧产

生的CO2排放量,tCO2;Dfue为综合场站核算年度内

各种设备消耗的化石燃料量,t;Ffue为化石燃料的

CO2排放因子,tCO2/t。柴油的碳排放因子取1.7
tCO2/t。

工业生产过程中的碳排放是指除化石燃料燃烧

之外的物理或化学变化所造成的二氧化碳排放。施

工过程中,化学反应的碳排放测算宜包括生产混凝

土所产生的二氧化碳排放,具体测算公式为:

Epro =∑
n

i=1

(Ai×Ei) (18)

式中:Epro为综合场站核算年度内化石工业生产活

动产生的CO2排放量,tCO2;Ai为综合场站核算年

度内第i种工业生产过程的活动数据,主要指综合

场站预制梁生产所消耗的混凝土数量,t;Ei为第i
种工业生产活动的碳排放因子,tCO2/t。混凝土碳

排放因子取0.002146tCO2/t。
电力消耗是综合场站最主要的碳排放来源,本

文主要考虑钢筋场、梁场、拌合站等场站的耗电设备

工作所产生的碳排放,具体公式为:

Eele=∑
n

j=1
Dj×Fele  (19)

式中:Eele为综合场站核算年度内消耗电力所产生的

CO2排放量,tCO2;Dj为综合场站核算年度内第j种

耗电设备运行所消耗的电量,MW·h;Fele为工业用

电的碳排放因子,tCO2/(MW·h)。全国电网推荐的

碳排放因子为0.5703tCO2/(MW·h)。

人工碳排放量主要是指综合场站现场工作人员

在工业生产和建筑施工等人类活动中消耗能源所产

生的碳排放量,主要通过测算人员每日衣食住行的

能源消耗量,再经过换算,得到综合场站人工碳排放

量,具体公式为:

Eper=∑
n

k=1
k×Fper  (20)

式中:Eper为综合场站核算年度内人工产生的碳排

放量,tCO2;k为综合场站核算年度内的第k 天;Fper

为人工碳排放因子,tCO2/(人·日)。人工碳排放

因子取0.0004604tCO2/(人·日)。
根据综合场站2024年的施工期监测数据,由以

上核算模型可计算出每日的碳排放总量,其变化趋

势如图4所示。对于所得的146组时间序列数据,
将其中前80%作为训练集(117组数据),后20%作

为测试集(29组数据),以备使用。

图4 碳排放量变化

Fig.4 Changesincarbonemissions
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2.5 模型构建

由于 VMD与LSTM 模型中的参数会对最终

预测结果产生较大影响,因此选取合适的参数组合

是获得良好预测结果的关键。本文使用网格搜索方

法分别对VMD的K、α(表2),LSTM 的单元数量、
批次大小、学习率、训练周期(表3)进行寻优,目标

函数为 MSE。网格划分规则见表4。构建 VMD-
LSTM模型如图5所示,具体流程如下:

1)设定 VMD的参数 K、α的候选值范围(表

4),对于每个(K,α)组合,应用VMD将原始时间序

列数据分解为多个模态分量;

2)计算每个(K,α)组合分解后的多个模态分

量之和与原始数据间的 MSE,选取最小 MSE所对

应的参数K、α;

3)利用所得K、α对原始数据进行变分模态分

解,得到n个模态分量;

4)将每个模态分量中前80%的数据作为训练

集,后20%的数据作为测试集,确定LSTM 的参数

范围;对于每一个模态分量,使用表4中的候选值构

建LSTM模型;

5)创建一个包含所有超参数组合的网格,对于

每个超参数组合,使用交叉验证方法训练LSTM 模

型,并计算其 MSE作为评估指标,然后记录每个组

合的 MSE值;

6)找出最小 MSE值对应的超参数组合,使用

最佳超参数组合重新训练模型;

7)使用最佳LSTM 模型对每个模态分量进行

预测,将所有模态分量的预测结果合并成最终的预

测结果;

8)计算测试集中预测值的 AR、MSE、RMSE
和R2,评估预测效果。

表2 VMD参数及其影响

Tab.2 VMDParametersandtheirimpact

参数 影响

模态数量(K)
K 值较小会导致分解出来的模态分量较少,无法充分捕捉到信号中的所有细节特征。

K 值较大会得到更多的模态分量,这样能够更精细地描述原始信号,但会导致某些模态过于细

微或重复,增加了解释难度。

加权参数(α)
当α较小时,算法对模态之间的频域分离要求较弱,使得模态之间在频域上的重叠较多。

当α较大时,算法倾向于将模态在频域上严格分离,减少模态间的频谱重叠。

当α过大时,可能会导致过拟合问题,即生成的模态分量可能不符合实际信号的特点。

表3 LSTM参数及其影响

Tab.3 LSTMparametersandtheirimpact

超参数 影响

单元数量

较少的单元数量会导致模型的学习能力受限,不足以捕获序列数据中的复杂模式,从而导致欠

拟合现象,使得预测性能较差;较多的单元数量可以让模型学习更复杂的模式,提高其拟合能

力,但过多的单元数量会导致过拟合现象。

批次大小

较小的批次可以提高模型的泛化能力并有助于避免过拟合,但因计算效率较低,整体训练速度

可能会变慢;较大的批次可以提高计算效率,但会导致梯度估计不够准确,影响收敛速度和最终

性能,并使模型难以逃出局部最小值。

学习率
较小的学习率会导致训练过程缓慢,并可能使模型困在局部最小值附近;而较大的学习率虽能

加速训练过程,但若过大,会导致训练过程不稳定,甚至发散。

训练周期
较少的训练周期会导致模型欠拟合,而较多的训练周期虽可让模型更好地拟合数据,但若设置

过高,会导致过拟合。
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表4 参数的网格划分

Tab.4 Griddivisionofparameters

参数 候选值

模态数量(K) [2,10]中的整数值

加权参数(α) 将[100,2000]平均分为100段的端点值

单元数量 {32,64,128,256}

批次大小 {32,64,128}

学习率 {0.001,0.01,0.1}

训练周期 {10,40,70,100}

图5 VMD-LSTM模型

Fig.5 VMD-LSTMmodel
 

3 预测结果与对比分析

3.1 VMD分解结果

将原始 碳 排 放 量 时 间 序 列 数 据 输 入 VMD-
LSTM模型中,以分解后多个模态分量之和与原始数

据间的MSE为适应度函数,利用网格搜索方法对参数

K、α进行寻优,寻优结果为K=4、α=176.76,适应度值

为0.00315。VMD分解中其他参数设置如下:时间间

隔tau=1.0、不保留直流分量(DC=False)、初始化

方法为 随 机 初 始 化(init=random)、容 差tol=
0.001。依据上述参数执行 VMD可得到4个具有

不同中心频率的模态分量,如图6所示。

图6 VMD分解结果

Fig.6 VMDdecompositionresults
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3.2 预测结果

将所得4个具有不同中心频率的模态分量分别

输入LSTM模型中,以 MSE为适应度函数,使用K
折交叉验证方法训练并评估LSTM 模型,利用网格

搜索方法对单元数量、批次大小、学习率、训练周期

进行寻优,而后使用寻优所得参数训练模型,之后使

用测试集进行预测,得到4个模态分量的预测结果,
最后合并所有预测结果即为最终预测结果,如图7
所示。

图7 VMD-LSTM模型预测结果

Fig.7 VMD-LSTMmodelpredictionresults
 

从图7中可以看出,高速公路综合场站的碳排

放量呈现周期性变化,一个周期约为9~10天,且周

期内呈现先增加再减少的趋势。这是由于综合场站

的生产计划、运输安排等使得物料产出具有周期性

变化。预测结果中,预测值的周期性变化趋势与实

际值的趋势吻合程度较高,说明模型对周期性变化

的捕捉能力较强,具备较高的整体预测精度。

3.3 对比分析

为评估VMD-LSTM 模型的预测效果与精度,
本文构建了LSTM 模型与之进行对比。由图8可

以看出,LSTM模型的预测值变化趋势与实际值变

化趋势吻合程度较低,第23、25号预测值误差均已

超过100%,其余误差在0%~40%,说明 VMD-
LSTM模型预测性能更好,预测精度更高。

图8 LSTM模型预测结果

Fig.8 LSTMmodelpredictionresults
 

从图9可以看出,VMD-LSTM 模型的4个评

价指标表现更优,其AR、MSE、RMSE、R2值分别为

94.32%、0.0993、0.3150、0.9739,与LSTM 模型

相比,其 AR、R2分别提升了52.42%、195.12%,

MSE、RMSE分别降低了96.18%、80.47%。

图9 各评价指标对比

Fig.9 Comparisonofvariousevaluationindicators
 

综上 所 述,与 传 统 LSTM 模 型 相 比,VMD-
LSTM模型预测效果更好、误差更小、拟合程度更

高。这是因为VMD能够将原始时间序列分解成多
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个IMF,这些IMF往往包含了不同频率成分的信

息,可视为对原始信号的降噪处理和特征提取。分

解后的IMF通常比原始信号更为线性和平稳,这使

得后续的LSTM 模型更易捕捉到数据的趋势和模

式。通过对不同频率的IMF单独进行建模,可以减

少模型之间的相互干扰,从而提高整体的预测精度,
即使某些IMF受到噪声影响,其他IMF仍然能够

提供有用的信息,因此整个预测模型会更加稳定。

3.4 不足与展望

本文提出了一个结合 VMD与LSTM 的高速

公路场站碳排放预测模型。该模型使用VMD将碳

排放量时间序列分解为多个IMF来捕捉时间序列

的周期性变化,而后使用LSTM 对多个IMF分量

进行预测,从而实现对每日碳排放量的预测。结果

表明,所提的VMD-LSTM模型比传统LSTM模型

具有更好的泛化能力与预测精度。但是,该方法还

存在以下不足。

1)数据覆盖的时空维度受限。现有研究仅基

于场站施工期146天的碳排放总量数据进行建模,
存在时间跨度短、空间分辨率低的双重局限,导致模

型难以准确捕捉碳排放的长期演化规律及空间异质

性特征,制约了对碳排放源头的溯因分析能力。

2)动态影响因素的耦合机制考虑不足。现有

模型过度依赖历史碳排放数据,未充分考虑施工动

态因素(如工期调整、节假日停工、极端天气等)对碳

排放的复杂影响,且缺乏突发事件量化分析方法,导
致其在施工计划频繁变动场景下的预测稳定性不

足,仅适用于常规稳定工况。
未来研究需聚焦两个方向:一是收集覆盖施工

期全过程的碳排放数据,结合建筑信息模型(BIM)、
地理信息系统(GIS)建立三维模型,利用时空图网

络分析空间差异;二是融合天气、施工记录等动态数

据,用贝叶斯网络分析突发事件的影响,同时结合物

理模型和数据驱动方法构建智能预测系统。此外,
还可开发分层预测架构,加入行业知识图谱,通过轻

量化模型实现“整体预测 局部监测”同步输出,最终

提升复杂施工场景的预测可靠性,以支持实时监测

和低碳决策。

4 结 论

高速公路综合场站是桥梁及公路建设过程中能

源消耗和碳排放的聚集地和高发地。为了实现高速

公路综合场站每日碳排放量的精准预测,本文创新

性地采用了VMD与LSTM相结合的VMD-LSTM
模型来预测高速公路综合场站的碳排放量变化。

1)预测结果中,预测值的周期性变化趋势与实

际值的趋势吻合程度较高,说明模型对周期性变化

的捕捉能力较强,具备较高的整体预测精度。

2)与LSTM模型相比,VMD-LSTM模型的准

确率(AR)、均方误差(MSE)、均方根误差(RMSE)、
决定系数(R2)表现更优,分别为94.32%、0.0993、

0.3150、0.9739。这说明 VMD-LSTM 模型在预

测高速公路综合场站的碳排放量时性能优异,预测

效果好、误差小、拟合程度高。
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