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多策略改进黏菌算法的支持向量机参数优化
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摘要:支持向量机(SVM)惩罚因子和核参数的选择对分类模型的复杂度和准确性有较大影响,基

于此,本文提出一种多策略改进黏菌算法(MESMA)对支持向量机的参数进行优化,以提高模型分

类准确率。首先,利用佳点集初始化种群、广义正态分布搜索与自适应比例变异策略对基本的黏菌

算法进行改进;其次,选取CEC2017基准测试集,将所提算法 MESMA与6种智能算法进行对比,
结果 表 明 MESMA 具 有 更 好 的 优 化 性 能;最 后,利 用 MESMA 算 法 对 SVM 参 数 进 行 优 化

(MESMA-SVM),在UCI数据库中选取4个标准数据集进行分类,并与其它3种模型进行比较,
实验结果显示 MESMA-SVM模型分类性能更好、准确率更高。
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Abstract:Supportvectormachine(SVM)parameterssuchaspenaltyparameterandkernelparam-
eterhaveasignificantimpactonthecomplexityandaccuracyofclassificationmodel.Basedon
this,thispaperproposesanenhancedslimemouldalgorithmwithmulti-strategy(MESMA)to
optimizetheparametersforsupportvectormachine,sothatclassificationaccuracybythemodel
canbepromoted.Firstly,thebasicslimemouldalgorithmisimprovedviastrategiesincluding
goodpointsetinitializationpopulation,generalizednormaldistributionsearch,andadaptivepro-
portionalvariationstrategy.Secondly,theproposedalgorithmMESMAiscomparedwithsixin-
telligentalgorithmsontheCEC2017benchmarkfunctions.TheresultsshowthatMESMAhasa
superioroptimizationperformance.Finally,theSVMparametersareoptimizedusingtheMES-
MAalgorithm(MESMA-SVM)forclassificationoffourstandarddatasetsselectedfromUCIdata
repository.TheexperimentalresultsshowthattheMESMA-SVMmodelcomparedwiththeoth-
erthreealgorithmshasabetterclassificationperformanceandhigheraccuracy.
Keywords:slimemouldalgorithm;SVM;goodpointset;generalizednormaldistributionsearch;

adaptiveproportionalvariation
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  支持向量机(supportvectormachine,SVM)是

Cortes等[1]基于VC理论和结构风险最小化理论于

1995年提出的一种有监督机器学习方法。近年来,

SVM已经被广泛应用于多个领域,如故障检测[2]、
医疗诊断[3]和图像分类[4]等。SVM 算法的设计完

整且规范,在小样本数据、高维数据分类和预测方面

表现良好[5]。但是,SVM算法中的惩罚因子和核参

数对分类准确率和泛化能力有很大影响,目前还没

有统一的方法来指导参数的选择。通常情况下,这
些参数采用网格搜索法、梯度下降法等方法来确定,
然而这些方法很容易受到局部最优的影响,同时耗

时较长[6]。群智能算法在解决参数优化问题时具有

较强的并行处理能力,可以利用自身的探索与开发

机制充分搜索空间中的最优解。近年来,果蝇优化

算法[7]、萤火虫算法[8]、蝙蝠算法[9]等群智能算法已

被验证在解决SVM参数调优问题时具有更好的性

能和更快的效率。
黏菌算法(slimemouldalgorithm,SMA)是Li

等[10]通过模拟多头绒泡菌觅食过程中的行为和形

态变化,于2020年设计的一种新型群智能算法。黏

菌算法利用生物振荡器传播波的正负反馈机制(通
过自适应权重调节),能自适应地找到链接食物的最

佳路径,其振荡向量可以很好地平衡算法的开发和

探索能力。自SMA提出以来,因其简单的结构和

良好的优化能力已被应用于多个领域,如光伏模型

参数识别[11]、3D物联网定位[12]、图像分割[13]等。
为进一步提高 SMA 的性能,使其更适用于

SVM的参数选择问题,本文提出一种多策略改进黏

菌 算 法 (enhancedslime mouldalgorithm with
multi-strategy,MESMA)。MESMA 采用的改进

策略如下:①采用佳点集初始化种群,提高种群遍历

性;②引入广义正态分布搜索策略,以当前的平均位

置和最好位置为指导更新黏菌种群位置,提高算法

开发能力;③加入自适应比例变异策略,进一步提高

算法搜索效率。在CEC2017测试集上进行数值实

验,通过与其它智能算法及改进的SMA进行对比

分析,发现 MESMA具有更好的寻优性能和收敛速

度。最后,采用改进算法 MESMA对SVM 的两个

参数进行优化,建立 MESMA-SVM分类模型,并在

UCI数据库中的4个数据集上进行对比实验,结果

显 示 MESMA-SVM 相 比 于 PSO-SVM、GWO-
SVM和SMA-SVM具有更高的分类准确率。

1 SVM 基本理论

支持向量机的主要思想是在特征空间中寻找最

佳分离超平面,使映射到高维特征空间的支持向量

到该超平面的距离最大化。给定训练样本集 {(x1,

y1),(x2,y2),…,(xl,yl)},yi∈ {-1,1},设ϕ(x)
为样本空间到高维特征空间的映射函数,wTϕ(x)+
b=0为特征空间中的划分超平面,其中w为超平面

法向量,b为位移项。寻找最优分类超平面属于一

个优化问题,具体如下:

min12 ‖w‖
2+C∑

l

i=1
ξi

s.t.yi(wTϕ(xi)+b)≥1-ξi,i=1,2,…,l

􀮠

􀮢
􀮡

􀪁􀪁
􀪁􀪁

(1)
式中:ξi≥0为松弛变量;C为惩罚因子。

使用拉格朗日乘子法,可得式(1)的对偶优化问

题为:

min12∑
l

i=1
∑
l

j=1
αiαjyiyjK(xi,xj)-∑

l

i=1
αi

s.t.∑
l

i=1
αiyi =0,0≤αi≤C,i=1,2,…,l

􀮠

􀮢

􀮡

􀪁
􀪁􀪁
􀪁
􀪁􀪁

(2)
式中:K(xi,xj)= <ϕ(xi),ϕ(xj)>=ϕ(xi)Tϕ(xj)
为核函数;αi 为拉格朗日乘子。

对式(2)进行求解,可确定最优分离超平面,从
而可得决策函数:

f(x)=sgn(∑
l

i=1
αiyiK(xi,x)+b) (3)

式中:sgn(·)为符号函数。
径向基核函数(RBF)可逼近任何非线性函数,

径向基核函数为:

K(xi,xj)=exp(-‖xi-xj‖2/2σ2) (4)
式中:σ>0为核参数。

由于RBF参数σ和惩罚因子C 对SVM模型的

分类性能影响较大,本文通过改进的黏菌算法对

SVM的参数进行优化。

2 改进的黏菌算法

2.1 基本的黏菌算法

2.1.1 接近食物

黏菌根据空气中的气味接近食物,其收缩模式

的模拟公式为:

X(t+1)=
Xb(t)+vb·(W·

XA(t)-XB(t)), r<p
vc·X(t),    r≥p

􀮠

􀮢
􀮡

􀪁􀪁
􀪁􀪁 (5)

式中:t为当前迭代次数;X 为黏菌的位置;Xb为当

前发现的气味浓度最高的个体位置,即最佳个体位

置;XA和XB为在黏菌种群中随机选取的两个个体;
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vb为[-a,a]之间的参数;vc随着迭代次数从1线性

递减至0;W 为黏菌的权重;r 为[0,1]区间的随

机数。

p的计算公式为:

p=tanhS(i)-DF (6)
式中:S(i)为黏菌个体X 的适应度值,i=1,2,…,

N;N 为种群规模;DF为当前得到的黏菌个体的最

佳适应度值。

vb的计算公式为:

vb = [-a,a] (7)

a=arctanh -t
T +1  (8)

式中:T 为最大迭代次数。

W 的计算公式为:

W(SI(i))=
1+r·logbF-S(i)

bF-wF
+1  ,Con

1-r·logbF-S(i)
bF-wF

+1  ,其他

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁

(9)

SI=sort(S) (10)
式中:bF和wF分别为当前迭代下获得的最佳和最差

适应度值;Con为S(i)在种群中排序前一半的部分;

SI为根据适应度值排序的序列(在最小值问题中为

升序)。

2.1.2 包裹食物

基于黏菌包裹食物时的行为,黏菌的位置更新

公式为:

X* =
r'·(ub-lb)+lb,r'<z
Xb(t)+vb· W·XA(t)-XB(t)  ,r<p
vc·X(t),r≥p

􀮠

􀮢
􀮡

􀪁􀪁
􀪁􀪁

(11)
式中:r'为[0,1]区间的随机数;ub和lb表示搜索空

间的上界和下界;z=0.03[10]。

2.1.3 振荡过程

vb在[-a,a]区间随机振荡,并随着迭代次数

的增加逐渐趋于零,其振荡过程模拟了黏菌决定接

近食物还是寻找其它食物源。vc在[-1,1]区间振

荡,最终趋于零。vb和vc之间的协同交互模拟了黏

菌选择食物的过程。

2.2 多策略改进黏菌算法

2.2.1 佳点集初始化黏菌种群

对于群智能算法,初始种群的分布多样性很大

程度上影响着算法的搜索速度和优化能力,黏菌算

法采取的是随机初始化种群,其产生的初始种群在

解空间的均匀遍历性得不到保证,会存在个体聚集问

题。文献[14]指出,采用佳点集生成的点集比随机方

式生成的点集误差小了平方倍。因此,本文采用数论

中的佳点集对种群进行初始化,其原理和结构如下。
设Vd 是d 维空间中的单位立方体,若r∈Vd,

形为式(12)的数集集合可称为佳点集。

Pn(k)= r(n)1 ·k  ,r(n)2 ·k  ,… ,r(n)d ·k    , 
1≤k≤n (12)

  其中,偏差ϕ(n)满 足ϕ(n)= C(r,ε)n-1+ε,

C(r,ε)n-1+ε 为只和r、ε(ε为任意正数)有关的常

数,r为佳点,r(n)d ·k  表示取小数部分,n为佳点

个数,一般取r= 2cos(2πk/p),1≤k≤d  ,p
为满足d≤ (p-3)/2的最小素数。

通过式(12)生成佳点集后,将其映射到搜索空

间生成初始种群。在 [0,1]×[0,1]的空间中采

用随机法和佳点集法生成两个包含100个点的点

集,如图1和图2所示,可以看出,采用佳点集法生

成的点集分布更均匀,可以有效避免无效个体的产

生,且其高维空间也不失一般性。

图1 随机法生成的点集

Fig.1 Pointsetgeneratedbyrandommethod
 

图2 佳点集法生成的点集

Fig.2 Pointsetgeneratedbygoodpointsetmethod
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2.2.2 广义正态分布搜索策略

随着迭代次数的增加,p值逐渐减小,基本黏菌算

法执 行 X* = Xb(t)+vb· W·XA(t)-XB(t)  ,

r<p的可能性变小,因此在基本SMA位置更新之

前,采 用 广 义 正 态 分 布 优 化 算 法[15](generalized
normaldistributionoptimization,GNDO)中的局部

开发策略可以增强SMA算法的开发能力。广义正

态分布优化算法中的局部开发策略以当前的平均位

置和最优位置为指导,其位置更新公式为:

Xi(t+1)=μi+η×δi (13)
式中:i=1,2,3,…,N;μi为广义平均位置;δi为广

义标准差;η为参数,其具体计算公式为:

μi = 13
(Xi(t)+Xb(t)+M) (14)

δi = 1
3
[(Xi(t)-μi)2+(Xb(t)-μi)2+(M-μi)2]

(15)

η=
-ln(λ1)×cos(2πλ2), a≤b

-ln(λ1)×cos(2πλ2+π),其他 (16)

M =
∑
N

i=1
Xi(t)

N
(17)

式中:a、b、λ1、λ2均为[0,1]区间的随机数;M 为当

前种群的平均位置;N 为种群规模。
图3显示了由式(16)生成的随机序列,可以看

到参数η大多处于-1到1之间,可通过增加黏菌

个体搜索的方向来提高算法的搜索能力。

图3 式(16)生成的随机序列

Fig.3 RandomsequencegeneratedbyEquation(16)
 

2.2.3 自适应比例变异策略

为进一步提高SMA的搜索效率,在基本SMA
位置更新之后加入自适应比例变异策略[16],即在进

入下一次迭代之前,根据适应度值对个体进行排序

(极小化问题为升序,极大化问题为降序),保留个体

较好的前1/2种群,而对后1/2种群的个体进行变

异操作,变异个体的比例随迭代次数的增加呈非线

性下降。执行自适应比例变异策略的位置更新

如下:

X2_no =floor((N/2)×t) (18)

X1_no =N-X2_no (19)

t= (1-t
T
)

t
T (20)

X1 =X(1:X1_no,:) (21)

X2 =X(X1_no+1:Xend,:) (22)

X2 =X2+rand(1,dim)×(X(1,:)-X2)
(23)

X = X1,X2  (24)
式中:floor(·)表示向下取整数;X1_no和X2_no分别

为保留个体和变异个体的种群规模;X1和 X2分别

为保留个体种群和变异个体种群;X(1,:)表示种

群排序后的第一个个体位置,即当前迭代下的最佳

个体位置;Xend为种群中最后一个个体。
自适应比例变异策略可以快速淘汰适应度值较

差的个体,早期变异比例较大可以进一步提高算法

的全局搜索能力,更快地找到全局最优区域,而后期

变异比例较小可以保留更占优势的个体,从而有效

提高算法的搜索效率。

2.3 MESMA算法步骤

根据以上三种策略提出 MESMA算法的具体

执行步骤:
步骤1:初始化参数,包括种群规模 N,问题维

数D,最大迭代次数T,参数z,搜索空间的上界

ub、下界lb;
步骤2:采用佳点集初始化种群位置。利用式

(12)生成佳点集,然后在搜索空间生成初始黏菌

种群;
步骤3:计算每个黏菌个体的适应度值,并对适

应度值进行排序,更新当前迭代次数下最好的适应

度值bF、最坏的适应度值wF以及当前的最佳个体位

置Xb;
步骤4:根据式(13)~(17)进行广义正态分布

搜索,计算每个黏菌个体的适应度值并更新当前最

佳个体位置;
步骤5:利用式(6)~(9)计算参数p、vb和权重

W,根据式(11)更新黏菌位置;
步骤6:计算适应度值并对个体进行排序,然后

采用式(18)~(24)执行自适应比例变异操作;
步骤7:判断是否达到最大迭代次数,若是则结

束循环,输出最优个体位置,否则返回步骤3。
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3 MESMA性能测试

在本节实验中,选取CEC2017基准测试集来测

试 MESMA算法的综合优化性能。

3.1 测试函数的选择及参数设置

CEC2017基准测试集共包含30个函数,均为

最小化问题,搜索范围均为 [-100,100]D,D 为问

题维数。本文选取F1、F3(单峰函数),F5、F9(多峰

函数),F11、F15、F18与F19(混合型函数),F21、

F30(复合型函数)这10个函数进行数值实验。所

选函数涉及CEC2017基准测试集中四种不同的函

数类型,因此可以很好地检验算法在解决不同数值

优化问题时的能力。为了进行对比实验,所有算法

均设置相同的参数:种群大小 N 为30、问题维数D
为30、算法终止准则为最大迭代次数T=1000。

3.2 MESMA测试与结果分析

将 MESMA算法同粒子群优化(PSO)[17]、灰狼

优化(GWO)[18]、正余弦算法(SCA)[19]、SMA[10]、
平衡黏菌算法(ESMA)[20]、基于反向学习的黏菌算法

(OSMA)[21]进行对比。其中PSO的惯性权重分别为

wmax=0.95、wmin =0.4,学习因子分别为c1 =2.0、

c2 =2.0;GWO中a从2到0线性递减;SCA中a=2;

SMA、ESMA、OSMA 和所 提 MESMA 中 的z 均 取

0.03。为了避免随机因子和初始种群的随机性产生的

偶然误差,令每种算法独立寻优30次,记录误差平均

值(Mean)与标准差(Std),具体结果如表1所示。

表1 MESMA和其它智能算法在CEC2017部分测试函数上的实验结果

Tab.1 ExperimentalresultsbyMESMAandotherintelligentalgorithmsonCEC2017partialtestfunctions

函数 指标 GWO PSO SCA SMA ESMA OSMA MESMA

F1
Mean 2.14E+09 3.78E+09 1.87E+10 1.30E+04 1.07E+04 1.71E+04 9.11E+03

Std 1.49E+09 2.03E+10 3.07E+09 7.50E+03 6.78E+03 6.80E+03 6.50E+03

F3
Mean 5.05E+04 3.20E+04 6.54E+04 5.19E+03 1.41E+04 9.98E+03 4.55E+03

Std 1.23E+04 6.57E+04 1.16E+04 4.59E+03 7.34E+03 6.22E+03 2.19E+03

F5
Mean 1.13E+02 1.64E+02 3.09E+02 1.18E+02 1.09E+02 1.33E+02 7.83E+01

Std 3.20E+01 3.17E+01 2.66E+01 2.79E+01 3.07E+01 3.47E+01 1.99E+01

F9
Mean 1.18E+03 3.78E+03 6.18E+03 3.86E+03 2.76E+03 3.70E+03 1.12E+02

Std 6.19E+02 4.61E+03 1.29E+03 1.74E+03 1.76E+03 1.54E+03 1.41E+02

F11
Mean 1.16E+03 1.31E+02 2.14E+03 1.81E+02 1.50E+02 1.36E+02 7.84E+01

Std 9.63E+02 4.54E+01 8.86E+02 4.58E+01 4.90E+01 5.53E+01 3.08E+01

F15
Mean 2.61E+06 1.77E+08 3.42E+07 2.21E+04 1.59E+04 1.49E+04 3.50E+03

Std 9.87E+06 6.74E+08 2.81E+07 1.49E+04 1.40E+04 1.41E+04 3.04E+03

F18
Mean 1.29E+06 4.78E+07 9.38E+06 2.42E+06 1.96E+06 8.45E+05 2.79E+05

Std 2.45E+06 1.80E+08 6.28E+06 2.07E+06 1.96E+06 8.07E+05 2.05E+05

F19
Mean 1.18E+06 6.14E+08 6.74E+07 3.44E+04 2.51E+04 1.43E+04 3.67E+03

Std 1.97E+06 2.23E+09 2.87E+07 2.02E+04 2.33E+04 1.69E+04 4.21E+03

F21
Mean 3.07E+02 4.06E+02 4.88E+02 3.20E+02 3.15E+02 3.40E+02 2.71E+02

Std 3.58E+01 1.39E+02 2.37E+01 3.50E+01 3.16E+01 2.88E+01 1.88E+01

F30
Mean 1.10E+07 8.39E+08 1.53E+08 4.49E+04 1.51E+04 2.61E+04 9.04E+03

Std 1.27E+07 1.79E+09 7.34E+07 2.86E+04 7.24E+03 1.77E+04 3.89E+03

  注:粗体数据表示同一函数下相关指标的最优值。

  由表1可知,MESMA算法在求解不同类型的

函数时具有明显优势,其在10个函数上的均值、标
准差都小于其它6种算法,特别是与GWO和SCA
算法相比,MESMA的求解精度更高,说明引入策

略能够有效提高SMA的收敛速度和稳定性。
为了直观比较 MESMA与其它6种智能算法

的优化性能,绘制 MESMA和其它6种算法的收敛

曲线如图4所示。
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图4 CEC2017部分测试函数上的收敛曲线

Fig.4 ConvergencecurvesonsometestfunctionsofCEC2017
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  从图4可以清楚地看到,10种不同类型函数

下,MESMA的收敛曲线均位于其他曲线的最下

方,说明它可以在较少的迭代次数下达到更高的寻

优精度,在迭代100次时 MESMA就明显优于其它

算法。对于函数F18,MESMA在迭代到1000次

时仍有下降的趋势,说明该算法可有效避免陷入局

部最优。对于函数F9、F18、F19和F21,MESMA
在迭代到200次时就达到了较优的收敛精度,且在

迭代到100次时收敛精度级就开始优于其它6种算

法,说明 MESMA算法在求解复杂问题时拥有更高

的收敛精度。综上所述,MESMA在CEC2017测试

集上的寻优精度和收敛速度均优于其它6种智能

算法。

3.3 策略有效性分析

为了测试三种策略对基本SMA优化性能的贡

献程度和三种策略结合使用的必要性,将仅引入佳

点集初始化种群的SMA命名为GPSSMA,将仅引

入广义正态分布搜索策略的SMA命名为 GNDS-
MA,将仅引入自适应比例变异策略的SMA命名为

APMSMA,然 后 同 SMA 和 MESMA 一 起,在

CEC2017基准测试集的10个函数下进行数值实

验。为了避免初始种群的随机性和随机因子产生的

偶然误差,令每个算法在各函数上独立运行30次,
记录其误差平均值(Mean)和标准差(Std),并对结

果进行排名(Rank),实验结果如表2所示。

表2 不同改进策略在CEC2017部分测试函数上的实验结果

Tab.2 ExperimentalresultsofdifferentimprovementstrategiesonCEC2017partialtestfunctions

函数 指标 GPSSMA GNDSMA APMSMA SMA MESMA

F1

Mean 1.3784E+04 9.9773E+04 1.2875E+04 1.4588E+04 5.8063E+03

Std 7.5997E+03 5.1720E+04 7.8497E+03 9.5324E+03 4.3015E+03

Rank 3 5 2 4 1

F3

Mean 7.2630E+03 1.1253E+04 4.4603E+03 6.0223E+03 5.7621E+03

Std 5.0150E+03 3.9793E+03 2.8483E+03 3.8314E+03 3.1176E+03

Rank 4 5 1 3 2

F5

Mean 1.1853E+02 9.4740E+01 1.1493E+02 1.2508E+02 7.5918E+01

Std 3.7214E+01 1.9007E+01 3.2583E+01 3.9608E+01 1.6952E+01

Rank 4 2 3 5 1

F9

Mean 2.6899E+03 3.5524E+02 2.1944E+03 3.4294E+03 1.3330E+02

Std 1.2445E+03 2.5501E+02 9.5095E+02 1.6067E+03 1.7302E+02

Rank 4 2 3 5 1

F11

Mean 1.8022E+02 7.9557E+01 1.5314E+02 1.8450E+02 6.5493E+01

Std 6.1148E+01 2.7030E+01 4.3032E+01 6.6154E+01 2.4956E+01

Rank 4 2 3 5 1

F15

Mean 2.3883E+04 5.7834E+03 1.7669E+04 2.4477E+04 3.2616E+03

Std 1.5124E+04 7.1968E+03 1.5604E+04 1.4147E+04 2.3948E+03

Rank 4 2 3 5 1

F18

Mean 1.7093E+06 2.9057E+05 1.4907E+06 1.4873E+06 1.7351E+05

Std 1.9777E+06 2.4264E+05 1.3275E+06 1.4514E+06 8.9594E+04

Rank 5 2 4 3 1

F19

Mean 2.1406E+04 4.9452E+03 1.9762E+04 2.4422E+04 4.2843E+03

Std 2.1064E+04 1.0403E+04 2.1536E+04 2.2701E+04 2.2047E+03

Rank 4 2 3 5 1
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表2(续)

函数 指标 GPSSMA GNDSMA APMSMA SMA MESMA

F21

Mean 3.1563E+02 2.9065E+02 3.1201E+02 3.1943E+02 2.7210E+02

Std 2.9382E+01 1.9114E+01 3.4344E+01 3.8515E+01 1.3875E+01

Rank 4 2 3 5 1

F30

Mean 5.4332E+04 2.5458E+04 6.3761E+04 4.6678E+04 1.0520E+04

Std 4.3163E+04 1.0452E+04 7.0144E+04 2.5645E+04 3.9272E+03

Rank 4 2 5 3 1

  注:粗体数据表示同一函数下均值、标准差的最优值。

  从 表 2 可 以 看 出,GPSSMA、GNDSMA、

APMSMA在多数函数上的误差平均值和标准差都

优于SMA,而结合三种策略的 MESMA相比这三

种仅引入单个策略的黏菌算法寻优结果更好、在几

乎所有函数中排名第一,说明三种策略的结合使用

是必要的,可有效提高原始SMA的收敛速度、收敛

精度和稳定性。

4 基于 MESMA的SVM 参数优化

4.1 采用 MESMA对SVM 参数进行优化

SVM的性能与惩罚因子C和核参数σ密切相关,

结合上节测试结果,利用改进算法MESMA对SVM模

型的两个参数进行寻优,即构建MESMA-SVM分类模

型,以保证SVM分类器具有较高的分类准确率。

采用 MESMA-SVM模型的主要目的是提高分

类准确率,因此选取分类准确率来构建 MESMA算

法的适应度函数:

f=avg(Acc)= 1k∑
k

i=1
Acci (25)

式中:Acci 为第i折交叉验证的准确率;f为k折交

叉验证计算出的平均分类准确率。

采用 MESMA优化SVM参数的步骤如下:

步骤1:输入数据集,对原始数据进行归一化

处理;

步骤2:初始化参数,将SVM 的待优化参数C
和σ作为黏菌的位置参数,对黏菌算法的输入参数

进行初始化,包括种群规模大小 N、搜索空间上界

ub和下界lb(即惩罚因子C 和核参数σ 的寻优范

围)、最大迭代次数T 和问题维数D;
步骤3:以式(25)为优化目标,采用MESMA对

参数进行自适应寻优;

步骤4:判断是否达到最大迭代次数,若达到则

终止算法,输出最优黏菌位置Xb,即最佳参数组合

(C,σ),否则返回步骤3。

4.2 SVM 评价指标

采用分类准确率(Acc)、查准率(Pre)、查全率

(Rec)和F1值对 MESMA-SVM 模型的分类性能进

行评估。四个指标的值越大表示模型的分类效果越

好。其表达式分别为:

Acc= TP+TN
TP+FP+FN +TN ×100% (26)

Pre= TP
TP+FP

(27)

Rec= TP
TP+FN

(28)

F1 =2×Pre×Rec

Pre+Rec
(29)

式中:TP 为真正例;FP 为假正例;TN 为真反例;

FN 为假反例。

4.3 实验与结果分析

为验证 MESMA-SVM 模型的分类性能,将其

与PSO 优化的 SVM(PSO-SVM)、GWO 优化的

SVM(GWO-SVM)和 SMA 优化的 SVM(SMA-

SVM)三种模型进行比较。选取加州大学欧文分校

创建的 UCI机器学习数据库(http://archive.ics.

uci.edu/)中的4个标准数据集进行对比实验,各数

据集的描述如表3所示,由于每个数据集的特征值

的数量级不同,在构建SVM 模型之前,将数据归一

化到[0,1]区间。实验采用林智仁教授团队开发的

LIBSVM工具箱在 MATLAB2019a中实现,为保

证结果的有效性,采用五折交叉验证法。PSO和

GWO算法的参数设置与3.2节相同,同时为了体

现实验的公平性,所有算法的共有参数均设置为相

同值:种群规模为20,迭代次数为100,待优化参数

C和σ的搜索范围为[0.01,1000]。
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表3 数据集描述

Tab.3 Descriptionofdatasets

数据集 样本数 特征数 类别数

Ionosphere 351 34 2

Seeds 210 7 3

Vehicle 846 18 4

Aggregation 788 2 7

表4展示了PSO-SVM、GWO-SVM、SMA-SVM
和MESMA-SVM四种模型分别在Ionosphere、Seeds、

Vehicle和Aggregation四个数据集上的评价指标值。
在数据集Ionosphere和Aggregation上,MESMA-

SVM模型的Acc均超过了99%,其Pre、Rec与F1值也都

取得了最优结果。在数据集Seeds上,MESMA-SVM
模型的Acc、Pre、Rec与F1值分别为93.6508%、0.9141、

0.9048和0.9094,较PSO-SVM、GWO-SVM和SMA-

SVM 模 型 有 显 著 提 高。在 数 据 集 Vehicle上,

MESMA-SVM模型的四个指标值也均为最优。实

验结果表明,本文采用 MESMA算法对SVM 参数

进行寻优所建立的 MESMA-SVM模型是一个优异

的分类模型,可以有效提高SVM 的分类准确率。
究其原因,SMA可在实现优越的开发能力的同时保

证其探索能力,从而在开发和探索之间保持良好的

平衡[10]。MESMA在原始SMA 基础上加入了佳

点集初始化种群、广义正态分布搜索和自适应比例

变异策略,进一步提高了SMA算法的种群均匀性、
局部开发能力和收敛速度,这使得 MESMA能够有

效避免传统优化算法易陷入局部最优的问题,使其

相较于PSO、GWO和SMA拥有更好的优化性能,
因此,采用 MESMA优化的SVM 模型具有更高的

分类准确率和指标值。

表4 4种模型在4个数据集上的对比结果

Tab.4 Comparisonresultsby4modelsoneachof4datasets

数据集 模型 Acc/% Pre Rec F1

Ionosphere

PSO-SVM 65.0943 0.8238 0.5132 0.6324

GWO-SVM 97.1698 0.9720 0.9663 0.9692

SMA-SVM 97.1698 0.9720 0.9663 0.9692

MESMA-SVM 99.0566 0.9857 0.9737 0.9797

Seeds

PSO-SVM 39.6825 0.7853 0.3968 0.5272

GWO-SVM 84.1270 0.8780 0.8413 0.8593

SMA-SVM 84.1270 0.8780 0.8413 0.8593

MESMA-SVM 93.6508 0.9141 0.9048 0.9094

Vehicle

PSO-SVM 36.1775 0.3382 0.2649 0.2971

GWO-SVM 87.3720 0.8767 0.8814 0.8790

SMA-SVM 87.0307 0.8735 0.8775 0.8755

MESMA-SVM 91.6011 0.9134 0.8863 0.8996

Aggregation

PSO-SVM 70.0422 0.9179 0.6724 0.7762

GWO-SVM 94.9367 0.9682 0.9157 0.9412

SMA-SVM 98.3122 0.9818 0.9737 0.9777

MESMA-SVM 99.3671 0.9913 0.9765 0.9838

  注:粗体数据表示不同数据集下各评价指标的最优值。

5 结 语

本文提出了一种基于 MESMA的支持向量机

参数优化方法,在一定程度上解决了支持向量机惩

罚因子和核参数的优化选择问题。在 MESMA中,
采用佳点集初始化种群使黏菌个体的空间分布更均

匀,引入广义正态分布搜索策略增强算法的开发能

力,采用自适应比例变异策略进一步提高了算法的

搜索效率。CEC2017基准测试集上的数值实验结

果表明,MESMA的寻优精度和收敛速度均优于其

它6种智能算法。利用 MESMA对SVM的参数进

行寻优,建立 MESMA-SVM分类模型,并在4个标

准数 据 集 上 进 行 对 比 实 验,结 果 显 示 MESMA-
SVM模型相比其它模型具有更优的分类性能以及
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更高的分类准确率。
下一步,将继续探索如何将其它良好策略与

SMA有效结合来提高SMA的寻优性能,并考虑将

MESMA-SVM模型用于解决生活中的实际问题。
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